

Exotic hadron production in *pp* and *p*Pb collisions at LHCb

Matt Durham durham@lanl.gov

12th International Conference on Hard and Electromagnetic Probes of High-Energy Nuclear Collisions

New hadrons discovered at the LHC

The LHCb detector

JINST 3 (2008) S08005 Int. J. Mod. Phys. A 30, 1530022 (2015)

Production of exotic hadrons

- Most common method of discovery: *b* hadron decays
- Photon induced interactions on protons/nuclei
 - Accessible via Central Exclusive Production (*pp*) and Ultra-Peripheral Collisions (PbPb)
 - First measurement of exotic hadrons in CEP: arXiv:2407.14301
- Prompt production in *pp*
 - First measurement of exotic hadrons in jets: LHCb-PAPER-2024-021
- Prompt production in heavy ion collisions
 - Exotic subject to effects of cold nuclear matter/QGP
 - First measurement of exotic hadron nuclear modification factor R_{pA} : <u>PRL 132 242301 (2024)</u>

Production of exotic hadrons

- Most common method of discovery: *b* hadron decays
- Photon induced interactions on protons/nuclei
 - Accessible via Central Exclusive Production (*pp*) and Ultra-Peripheral Collisions (PbPb)
 - First measurement of exotic hadrons in CEP: arXiv:2407.14301
- Prompt production in *pp*
 - First measurement of exotic hadrons in jets: LHCb-PAPER-2024-021
- Prompt production in heavy ion collisions
 - Exotic subject to effects of cold nuclear matter/QGP
 - First measurement of exotic hadron nuclear modification factor R_{pA} : <u>PRL 132 242301 (2024)</u>

b hadron decays

• Reconstruct the decay $B^+ \to J/\psi \phi K^+$

b hadron decays

• Inspect combinations of daughter products for intermediate states

•

b hadron decays

- Inspect combinations of daughter • products for intermediate states
- Amplitude analysis requires four new • $J/\psi\phi$ resonances to describe data.

•

Candida

Central Exclusive Production/Ultra-Peripheral Collisions

Conventional charmonia states J/ψ , $\psi(2S)$ have been studied extensively in CEP/UPC

 There is HUGE interest in the production of exotic hadrons in these events: <u>PRD94, 094024 (2016), PRC100, 024620 (2019), PLB 805135447 (2020), PLB 810 136249 (2021),</u> <u>EPJC 81 710 (2021), PRD 104 114029 (2021), PRD 109 016007 (2024)</u>

- Select events with exactly four tracks: two muons, two kaons
- Veto additional activity with forward/backward shower counters
- Clear signals for $\phi(1020)$ and J/ψ

LHCD THCD

• Structures apparent in CEP data (exactly 4 tracks)

arXiv:2407.14301

- Structures apparent in CEP data (exactly 4 tracks)
- Gone when looking at "sideband" of events with more activity

• Consistent with tetraquark candidates previously observed in $B^{\pm} \rightarrow J/\psi \phi K^{\pm}$ decays CEP/UPCs provide totally new method to produce and study exotic hadrons

Production of exotic hadrons

- Most common method of discovery: *b* hadron decays
- Photon induced interactions on protons/nuclei
 - Accessible via Central Exclusive Production (pp) and Ultra-Peripheral Collisions (PbPb)
 - First measurement of exotic hadrons in CEP: arXiv:2407.14301
- Prompt production in *pp*
 - First measurement of exotic hadrons in jets: LHCb-PAPER-2024-021
- Prompt production in heavy ion collisions
 - Exotic subject to effects of cold nuclear matter/QGP
 - First measurement of exotic hadron nuclear modification factor R_{pA} : <u>PRL 132 242301 (2024)</u>

J/ψ in jets

- Long-standing challenge with description of production and polarization
- Charmonia in jets provides new way to examine production mechanisms

 $z(J/\psi) \equiv p_{\rm T}(J/\psi)/p_{\rm T}({\rm jet})$

J/ψ in jets

- Long-standing challenge with description of production and polarization
- Charmonia in jets provides new way to examine production mechanisms

 $z(J/\psi) \equiv p_{\rm T}(J/\psi)/p_{\rm T}({\rm jet})$

J/ψ in jets

- Long-standing challenge with description of production and polarization
- Charmonia in jets provides new way to examine production mechanisms

$\psi(2S)$ in jets

- The same measurement can also be done with $\boldsymbol{\psi}(2S)$
 - Very little feeddown, unlike J/ψ

$\psi(2S)$ in jets

- The same measurement can also be done with $\psi(2S)$
 - Very little feeddown, unlike J/ψ

Prompt: less isolated than NRQCD prediction. Two different production mechanisms?

X(3872) in jets

 $b \rightarrow X(3872)$: well described by PYTHIA Very similar to $b \rightarrow J/\psi$, ψ (2S)

X(3872) in jets

1/ס מס(z)/dz

Very similar to $\boldsymbol{b} \rightarrow \boldsymbol{J}/\boldsymbol{\psi}, \boldsymbol{\psi}(2S)$

different from conventional $c\bar{c}$ state $\psi(2S)$

Compare: prompt J/ψ , $\psi(2S)$, X(3872)

Ezra Lesser, Wednesday 11:30

Production of exotic hadrons

- Most common method of discovery: *b* hadron decays
- Photon induced interactions on protons/nuclei
 - Accessible via Central Exclusive Production (pp) and Ultra-Peripheral Collisions (PbPb)
 - First measurement of exotic hadrons in CEP: arXiv:2407.14301
- Prompt production in *pp*
 - First measurement of exotic hadrons in jets: LHCb-PAPER-2024-021
- Prompt production in heavy ion collisions
 - Exotic subject to effects of cold nuclear matter/QGP
 - First measurement of exotic hadron nuclear modification factor R_{pA} : <u>PRL 132 242301 (2024)</u>

Comparison between X(3872) and ψ (2S) suggests *something different* may be happening to exotic vs conventional hadrons in medium

Initial state effects (shadowing etc) should largely cancel in ratio

Ambiguity lifted by measuring R_n^{λ} nuclear modification factor:

$$\sigma_{pA}^{\chi_{c1}(3872)} = rac{\sigma_{pA}^{\chi_{c1}(3872)}}{208 \times \sigma_{pp}^{\chi_{c1}(3872)}}$$

modification factor of a tetraquark!

First measurement ever of nuclear modification factor of a tetraquark!

Ambiguity lifted by measuring nuclear modification factor: $R_{pA}^{\chi_{c1}(3872)} = \frac{\sigma_{pA}^{\chi_{c1}(3872)}}{208 \times \sigma_{pp}^{\chi_{c1}(3872)}}$

Evidence for enhancement of X(3872) in *p*Pb: Coalescence dominating over breakup?

We know heavy baryon production grows with multiplicity:

Julie Napora, Monday 18:10

Similar mechanisms should also increase tetraquark production

LHCb upgrades – directly improving the HI physics program

<u>Herschel detector</u>: used to characterized CEP/UPC events by measuring far forward/backward activity. Removed after Run 2 due to radiation damage.

Large Area Scintillator Array for UPCs (LASARUS): Resurrect this capability at LHCb.

LHCb upgrades – directly improving the HI physics program

<u>Herschel detector</u>: used to characterized CEP/UPC events by measuring far forward/backward activity. Removed after Run 2 due to radiation damage.

Large Area Scintillator Array for UPCs (LASARUS): Resurrect this capability at LHCb.

Magnet Station: tracks very soft particles that terminate in dipole.

Especially useful for UPC and complex hadronic decay channels of exotics

Summary

- QCD creates a rich spectrum of bound states our knowledge of the allowed configuration of quarks inside hadrons is rapidly growing
- LHCb has unequalled capabilities to explore exotic hadrons with multiple production mechanisms across a wide range of hadronic environments
- Exploring exotic hadrons give us new ways to test some of our favorite models of heavy quark production, hadronization, and transport in nuclear collisions
- New capabilities from upgrades directly improve the heavy ion physics program

Los Alamos is supported by the US Dept. of Energy/Office of Science/Office of Nuclear Physics and DOE Early Career Awards program

An enduring puzzle: X(3872)

The first exotic hadron, discovered in $I/\psi \pi^+\pi^-$ mass spectrum from B decays by Belle in 2003

- LHCb measured quantum numbers (PRL 110 222001 2013)
 - **Incompatible** with expected charmonium states
- Mass is consistent with sum of D^0 and \overline{D}^{*0} masses:

 $(M_{D^0} + M_{\bar{D}^{*0}}) - M_{\chi_{c1}(3872)} = 0.07 \pm 0.12 \text{ MeV}/c^2$

Large prompt production fraction (~80%) – potentially inconsistent with D

Constraining nPDFs with D mesons

X(3872)/ψ(2S)

PRL 126, 092001 (2021)

Molecular X(3872) with large radius and large comover breakup cross section is immediately dissociated

Coalescence of D mesons into molecular X(3872) increases ratio

Prompt component:

Increasing suppression of X(3872) production relative to $\psi(2S)$ as multiplicity increases

b-decay component:

Totally different behavior: no significant change in relative production, as expected for decays in vacuum. Ratio is set by \boldsymbol{b} decay branching ratios.

Calculations from EPJ C 81, 669 (2021)

Break-up cross section:

$$\langle v\sigma\rangle_{\mathcal{Q}} = \sigma_{\mathcal{Q}}^{\text{geo}} \left\langle \left(1 - \frac{E_{\mathcal{Q}}^{\text{thr}}}{E_c}\right)^n \right\rangle$$

Compact tetraquark of size 1.3 fm gradually dissociated as multiplicity increases – consistent with data

Quarkonia – bound states of heavy quarks

Example: P_c^{\pm} pentaquarks

Select daughters from the decay

 $\Lambda_b^0 \to J/\psi p K^-$

Masses are close to meson+baryon thresholds – candidate hadronic molecule

T^+_{cc}

Yield favors higher multiplicity collisions, reminiscent of deuteron. Evidence for hadronic molecule structure?

