

Elliptic flow of light hadrons, HF muons, and J/ ψ at forward rapidity in 200 GeV Au+Au collisions

Julia Velkovska

Vanderbilt University

on behalf of the PHENIX collaboration

Based on arXiv:2409.12715 and arXiv: 2409.12756

Supported in part by DOE Grant No. DE-FG05-92ER40712

Probing QGP with HF and quarkonia

- Elliptic flow is a key observable: access to transport properties of QGP
- Heavy quarks are unique:
 - $m_Q \gg \Lambda_{QCD} \rightarrow$ production cross-sections calculated in pQCD
 - $m_Q \gg T_{QGP} \rightarrow$ no thermal production (charm and beauty are conserved)
 - Early production; incomplete thermalization; hadronization by coalescence

The PHENIX Experiment

CENTRAL ARM (Electrons)

- $|\eta| < 0.35$
- $\Delta \phi = \pi$
- Tracking: DC, PC, VTX
- eID: RICH, Emcal

FORWARD ARMS (Muons)

- $1.2 < |\eta| < 2.2$
- $\Delta \phi = 2\pi$
- Tracking: MuTr, FVTX
- MuID: Muon Identification detector

EVENT PLANE DETECTORS

FVTX $(1.2 < |\eta| < 2.2)$ BBC $(3.1 < |\eta| < 3.9)$ CNT $(|\eta| < 0.35)$ Julia Velkovska (Vanderbilt)

Run 14 Au+Au 200 GeV (19B MB events) Run 16 Au+Au 200 GeV (15B MB events)

Mid-rapidity: inclusive HF R_{AA} and v₂

PRL 98, 172301 (2007)

- e[±] from inclusive HF show significant suppression and nonzero v₂
- HF e[±] R_{AA} and v₂ different from neutral pions
 - Indicates mass ordering
- Do *c* and *b* exhibit the same mass ordering behavior?

Separated Charm and Beauty R_{AA} and $v_{\rm 2}$

 \mathbf{R}_{AA} and \mathbf{v}_2 at low $\mathbf{p}_T < 4$ GeV/c: mass ordering for $\mathbf{b} \rightarrow \mathbf{e}$ and $\mathbf{c} \rightarrow \mathbf{e}$

Julia Velkovska (Vanderbilt)

 J/ψ Elliptic Flow at RHIC and LHC

PH^{*}ENIX

Rapidity dependence of QGP interactions

- Rapidity dependence of flow gives access to the longitudinal dynamics of the QGP
- Heavy flavor and quarkonia have rapidity-dependent initial state effects
- Pressure gradients and T are different at forward rapidity
- How is HF dynamics affected ?

Single Muon Analysis: arXiv:2409.12715

DCA_R (cm)

Muon

Rich

Separating h^{+/-} from inclusive muons

Julia Velkovska (Vanderbilt)

11

PHENIX Charged Hadron v₂ Measurements

0.25 charged hadron, |η|<0.35 (PRC92.034913) ٧2 **PH**^{*} ENIX charged hadron, 1.2<|n|<2.0 Au+Au 200 GeV 0.2 0-70% 0.15 0.1 0.05 0 0.5 1.5 2.5 3.5 2 3 p_T (GeV/c)

 Charged hadron v₂: Hint of rapidity dependence, consistent with PHOBOS

PHENIX Heavy Flavor v₂ Measurement

PHENIX Heavy Flavor v₂ Measurement

 J/ψ Signal Reconstruction $(J/\psi \rightarrow \mu^+ + \mu^-)$

arXiv: 2409.12756

- Candidate J/ ψ are reconstructed using dimuon decay channel
- 10-60% centrality will maximize potential v₂ signal
- Measure the J/ ψ yield in-plane and out-of-plane to determine v₂

• $v_2 \text{ of J}/\psi$ at forward rapidity is consistent with 0

PHENIX J/ ψ v₂ Measurement

- $v_2 \text{ of J}/\psi$ at forward rapidity is consistent with 0
- Theoretical calculations that include coalescence of partially thermalized ccbar are also consistent with the data

PHENIX J/ ψ v₂ compared to STAR and ALICE

PH^{*} ENIX

Summary

Summary

- PHENIX has measured the v_2 of charged hadrons, HF muons, J/ψ at forward rapidity
- Significant flow in HF muons! • $v_2^h > v_2^{HF} > v_2^{J/\psi}$
- $v_2^{J/\psi}$ is consistent with 0, but does not rule out coalescence from partially thermalized ccbar
- No significant longitudinal dependence in HF dynamics
- Hint of rapidity dependence in v_2^h

Backup Slides

Radial Distance of Closest Approach

- DCA_r is determined by projecting the particle track determined by the FVTX onto a plane in the *z*-axis located at the initial collision point
- Essentially this is a measurement of the distance from the primary vertex at which a particle was produced, i.e. for a prompt particle $DCA_r = 0$
- With a precise measurement you can separate detected muons according the particle from which they decayed

3D visualization of DCA_r

r-z plane visualization of DCA_r

PHENIX No rapidity dependence for flow of D0 at LHC

LHC J/ ψ R_{AA} and v₂: mid- and forward rapidity **PH ENIX**

