Measurements of heavy-flavor azimuthal correlations and *b*-jet suppression in Pb+Pb collisions with ATLAS

Soumya Mohapatra

(Columbia University) For the ATLAS Collaboration

This work is supported by the United States Department of Energy Grant DOE-FG02-86ER-40281

24 September 2024

Nagasaki

HardProbes 2024

- Heavy-Flavor (HF) quarks are produced at early times in AA collisions
 - Masses much larger than temperature of QGP
 - $T_{\rm QGP} \sim 200 500 \, {\rm MeV}$
 - Charm Mass : 1.275 GeV
 - Bottom Mass : 4.18 GeV

- Heavy-Flavor (HF) quarks are produced at early times in AA collisions
 - Masses much larger than temperature of QGP
 - $T_{\rm QGP} \sim 200 500 \, {\rm MeV}$
 - Charm Mass : 1.275 GeV
 - Bottom Mass : 4.18 GeV
- High p_T heavy-quarks :
 - expected to lose energy similar to light quarks
 - But with mass dependent modifications
 - Dynamics dependent on relative importance of radiative/collisional energy loss

- Heavy-Flavor (HF) quarks are produced at early times in AA collisions
 - Masses much larger than temperature of QGP
 - $T_{\rm QGP} \sim 200 500 \, {\rm MeV}$
 - Charm Mass : 1.275 GeV
 - Bottom Mass : 4.18 GeV
- High p_T heavy-quarks :
 - expected to lose energy similar to light quarks
 - But with mass dependent modifications
 - Dynamics dependent on relative importance of radiative/collisional energy loss
- Low p_T heavy-quarks :
 - expected to partially thermalize
 - Undergo brownian-like motion in QGP

- Heavy-Flavor (HF) quarks are produced at early times in AA collisions
 - Masses much larger than temperature of QGP
 - $T_{\rm QGP} \sim 200 500 \, {\rm MeV}$
 - Charm Mass : 1.275 GeV
 - Bottom Mass : 4.18 GeV
- High p_T heavy-quarks :
 - expected to lose energy similar to light quarks
 - But with mass dependent modifications
 - Dynamics dependent on relative importance of radiative/collisional energy loss
- Low p_T heavy-quarks :
 - expected to partially thermalize
 - Undergo brownian-like motion in QGP
- Two ATLAS HF measurements discussed today:
 - Azimuthal correlation between muon-pairs from HF decays (PRL 132 (2024) 202301)
 - Suppression of *b*-jets (EPJC 83 (2023) 438)

Disentangling radiative vs collisional energy loss

- HF-quark pairs provide a possible method to disentangle collisional and radiative energy loss (*PRC 90 (2014) 024907*)
 - Azimuthal correlations more broadened in "collision only" scenario
 - Less broadened when including radiative energy loss

Disentangling radiative vs collisional energy loss

- HF-quark pairs provide a possible method to disentangle collisional and radiative energy loss (PRC 90 (2014) 024907)
 - Azimuthal correlations more broadened in "collision only" scenario
 - Less broadened when including radiative energy loss
- Direct observation of bottom/charm hadron-pairs: experimentally difficult.
 - But measuring lepton-pairs from decays of HF-hadron pairs possible^{Collisional}
- At LHC, muons with $p_{\rm T}$ of 4-20 GeV dominated by HF-decays.
 - Used extensively by ATLAS to study v_2 and R_{AA} of bottom & charm

Radiative

QGP

Disentangling radiative vs collisional energy loss

- HF-quark pairs provide a possible method to disentangle collisional and radiative energy loss (*PRC 90 (2014) 024907*)
 - Azimuthal correlations more broadened in "collision only" scenario
 - Less broadened when including radiative energy loss
- Direct observation of bottom/charm hadron-pairs: experimentally difficult.
 - But measuring lepton-pairs from decays of HF-hadron pairs possible^{Collisional}
- At LHC, muons with $p_{\rm T}$ of 4-20 GeV dominated by HF-decays.
 - Used extensively by ATLAS to study v_2 and R_{AA} of bottom & charm
- Muon-pairs with $p_{\rm T}$ of each muon more than 4 GeV
 - Opp-sign pairs : originating from $b\overline{b}$ ~5x more likely than $c\overline{c}$
 - Same-sign pairs : almost exclusively from $b\overline{b}$ pairs

QGP

Data-MC comparisons for pp measurements

- $\Delta \phi = \phi_1 \phi_2$ distribution for muon pairs in *pp* collisions
 - Same-sign (left), opposite-sign (center), combined (right)
- *pp* Δφ correlations well reproduced by POWHEG
 - HF Production well understood
- POWHEG calculations show:
 - Nearly all (96%) same-sign muon pairs result from $b\overline{b}$ decays
 - Most (85%) opp-sign muon pairs result from $b\overline{b}$ decays

Data-MC comparisons for pp measurements

- $\Delta \phi = \phi_1 \phi_2$ distribution for muon pairs in *pp* collisions
 - Same-sign (left), opposite-sign (center), combined (right)
- *pp* Δφ correlations well reproduced by POWHEG
 - HF Production well understood
- POWHEG calculations show:
 - Nearly all (96%) same-sign muon pairs result from $b\overline{b}$ decays
 - Most (85%) opp-sign muon pairs result from $b\overline{b}$ decays

Measuring $\Delta \phi$ correlations between muon-pairs

- Compare (self-normalized) Δφ correlations between Pb+Pb and *pp*.
- For Pb+Pb:
 - Huge pedestal from combinatoric pairs
 - Flow modulation present in pedestal!
- For *pp*:
 - Much smaller pedestal, most pairs are back-to-back
- Fit correlation functions with the form:

$$C^{\text{Fit}}(\Delta\phi) = C_{\text{comb}} \left[1 + 2v_{2,2}^{\text{eff}} \cos\left(2\Delta\phi\right) \right] + C_{\text{corr}}(\Delta\phi)$$

With:

$$C_{\rm corr}(\Delta\phi) = \frac{C_{\rm corr}^{\rm max} \Gamma^2}{(\Delta\phi - \pi)^2 + \Gamma^2}$$

- The half-width at half-maximum (Γ) quantifies the shape of the correlation
- Alternate parameterization:

$$\sigma \equiv \sqrt{\int (\Delta \phi - \pi)^2 (C_{\rm corr}(\Delta \phi) - C_{\rm corr}(0)) \, d\Delta \phi}$$

Quantifying correlation shape vs centrality

- Compare Γ as a function of centrality
 - Measurements consistent with "no centrality dependence"
 - Pb+Pb and *pp* values consistent.
 - Widths identical for "same-sign" and "opp-sign" pairs
- No indication of any centrality dependent broadening!

Quantifying correlation shape vs centrality

- Compare Γ as a function of centrality
 - Measurements consistent with "no centrality dependence"
 - Pb+Pb and *pp* values consistent.
 - Widths identical for "same-sign" and "opp-sign" pairs
- No indication of any centrality dependent broadening!
- Same features observed for standard-deviation σ

Quantifying correlation shape vs centrality

- Compare Γ as a function of centrality
 - Measurements consistent with "no centrality dependence"
 - Pb+Pb and *pp* values consistent.
 - Widths identical for "same-sign" and "opp-sign" pairs
- No indication of any centrality dependent broadening
- Same features observed for standard-deviation σ

- (single b and for pairs)

See strong $b \rightarrow \mu$ suppression But not much angular deflection

b-jets in heavy-ion collisions

- b-jets vs inclusive jets in heavy ion collisions
 - Dead-cone effect : medium-induced gluon radiation expected to be suppressed
 - Sensitive to the mixture of radiative and collisional energy loss in the QGP
 - Color charge known; inclusive jets are mixture light quarks and gluons

b-jets in heavy-ion collisions

- *b*-jets vs inclusive jets in heavy ion collisions
 - Dead-cone effect : medium-induced gluon radiation expected to be suppressed
 - Sensitive to the mixture of radiative and collisional energy loss in the QGP
 - Color charge known; inclusive jets are mixture light quarks and gluons
- Suppression quantified by R_{AA}
 - Per-event yield of b-jets vs expectation from pp scaled by nuclear thickness function T_{AA}

$$R_{AA}^{b-jet} \equiv \frac{1}{N_{evt}} \frac{d^2 N_{AA}^{b-jet}}{dp_{T} dy} \bigg|_{cent} / \langle T_{AA} \rangle \frac{d^2 \sigma_{pp}^{b-jet}}{dp_{T} dy}$$

- *b*-Jets are tagged by requiring a muon within the Jet cone
- Statistically corrected for contributions from
 - Light-jets
 - *c*-jets
 - **Combinatorics**

Cross-sections for *b*-jets in *pp* collisions

 $p_{_{\rm T}}$ [GeV]

Left: cross-sections for R=0.4 and 0.2 *b*-jets in 5.02 TeV *pp* collisions

Cross-sections for *b*-jets in *pp* collisions

- Left: cross-sections for R=0.4 and 0.2 *b*-jets in 5.02 TeV *pp* collisions
- Right: ratio to Theory/Generators
- Model/Generator calculations consistent with data within 20% or better

Cross-sections : *b*-jets vs inclusive (*pp*)

Comparison of *b*-jet and inclusive jet cross-sections for R= 0.2 jets.

Cross-sections : *b*-jets vs inclusive (*pp*)

- Comparison of *b*-jet and inclusive jet cross-sections for R= 0.2 jets (left) and their ratio (right).
 - Ratio comparison to PYTHIA8 MC : consistent with data
 - Comparisons to CMS 7 TeV data
- Ratio independent of $p_{\rm T}$ (within uncertainties)
 - Important for R_{AA} interpretation

T_{AA} scaled per-event yields in Pb+Pb

- b-jets (left) and inclusive-jets (right)
 - Shown for 0-20%, 20-50% and 50-80% centralities
- Also shown for comparison are the *pp* cross-sections

R_{AA} for *b*-jets

- R_{AA} for b-jets and inclusive jets: 0-20% centrality (left), 50-80% centrality (left)
 - Consistent with unity in peripheral collisions
 - *R*_{AA} decreases from peripheral to central events
 - R_{AA} larger for *b*-jets: smaller suppression as compared to light jets
- Theory Comparisons
 - LIDO model calculations consistent with data
 - Calculations from Dai et. al. predict smaller R_{AA} (i.e. overpredict suppression)

R_{AA} double-ratios : *b*-jets/inclusive-jets

- Double ratios show that b-jets about 20% less suppressed in central collisions
 - Weak p_T dependence in relative suppression
- LIDO model calculations overpredict double ratios
- Calculations from Dai et. al. more consistent with double ratio
 - Though less consistent with R_{AA}

- Measured azimuthal correlations between muons pairs from HF decays
 - Peaks at $\Delta \phi \sim \pi$, characterized by half-width at half-maximum (Γ) and standard deviation (σ)

- Measured azimuthal correlations between muons pairs from HF decays
 - Peaks at $\Delta \phi \sim \pi$, characterized by half-width at half-maximum (Γ) and standard deviation (σ)
 - No significant difference between *pp* and Pb+Pb
 - No significant variation with centrality
 - Widths consistent between *same-sign*, *opposite-sign* pairs

- Measured azimuthal correlations between muons pairs from HF decays
 - Peaks at $\Delta \phi \sim \pi$, characterized by half-width at half-maximum (Γ) and standard deviation (σ)
 - No significant difference between *pp* and Pb+Pb
 - No significant variation with centrality
 - Widths consistent between *same-sign*, *opposite-sign* pairs
 - Measurements provide constraints on stochastic deflection of bottom quarks in the QGP.

- Measured azimuthal correlations between muons pairs from HF decays
 - Peaks at $\Delta \phi \sim \pi$, characterized by half-width at half-maximum (Γ) and standard deviation (σ)
 - No significant difference between *pp* and Pb+Pb
 - No significant variation with centrality
 - Widths consistent between *same-sign*, *opposite-sign* pairs
 - Measurements provide constraints on stochastic deflection of bottom quarks in the QGP.
- Measured *b*-jet production and suppression in Pb+Pb collisions
 - *b*-jet cross-section in *pp* collisions well reproduced by generators/models

- Measured azimuthal correlations between muons pairs from HF decays
 - Peaks at $\Delta \phi \sim \pi$, characterized by half-width at half-maximum (Γ) and standard deviation (σ)
 - No significant difference between *pp* and Pb+Pb
 - No significant variation with centrality
 - Widths consistent between *same-sign*, *opposite-sign* pairs
 - Measurements provide constraints on stochastic deflection of bottom quarks in the QGP.
- Measured *b*-jet production and suppression in Pb+Pb collisions
 - *b*-jet cross-section in *pp* collisions well reproduced by generators/models
 - R_{AA} for b-jets and inclusive jet decrease from peripheral \rightarrow central collisions
 - R_{AA} for *b*-jets larger than inclusive jets in central Pb+Pb collisions: *b*-jets less suppressed

- Measured azimuthal correlations between muons pairs from HF decays
 - Peaks at $\Delta \phi \sim \pi$, characterized by half-width at half-maximum (Γ) and standard deviation (σ)
 - No significant difference between *pp* and Pb+Pb
 - No significant variation with centrality
 - Widths consistent between *same-sign*, *opposite-sign* pairs
 - Measurements provide constraints on stochastic deflection of bottom quarks in the QGP.
- Measured *b*-jet production and suppression in Pb+Pb collisions
 - *b*-jet cross-section in *pp* collisions well reproduced by generators/models
 - R_{AA} for b-jets and inclusive jet decrease from peripheral \rightarrow central collisions
 - R_{AA} for *b*-jets larger than inclusive jets in central Pb+Pb collisions: *b*-jets less suppressed
 - Theory comparisons indicate a role for mass and color-charge effects in partonic energy loss
 - More measurements needed to fully disentangle effects

Quantifying the Pb+Pb vs pp width difference

Mass distributions

- Left : Invariant mass ($m_{\mu\mu}$) distributions for muon pairs before applying any selections on $\Delta \eta$ or $m_{\mu\mu}$. • Middle : $m_{\mu\mu}$ distributions after requiring $|\Delta\eta| > 0.8$.
- Right : The distributions after further applying cuts on m_{uu} to the opposite-charge pairs.
- Top and bottom : Pb+Pb and pp, respectively.

$\Delta \phi$ acceptance effects form m_{uu} requirements

The $\Delta\eta$ - $\Delta\phi$ distribution for opposite-sign muon pairs with 9.20<m_{uu}<10.40 GeV.

$$\vec{u}_{\mathrm{T}}^{\mathrm{jet}+\mu} = \frac{\vec{p}_{\mathrm{T}}^{\mu} + \vec{p}_{\mathrm{T}}^{\mathrm{jet}}}{\left|\vec{p}_{\mathrm{T}}^{\mu} + \vec{p}_{\mathrm{T}}^{\mathrm{jet}}\right|}$$

prel

$$p_{\rm T}^{\rm rel} = \left| \vec{p}_{\rm T}^{\mu} \times \vec{u}_{\rm T}^{\rm jet+\mu} \right|$$

