





## Prompt/non-prompt J/ψ production in proton-proton and Pb–Pb collisions with ALICE

Yuan Zhang For the ALICE Collaboration

University of Science and Technology of China

#### Introduction

➢ J/ψ is bound state of charm and anti-charm quark pair.
 ➢ The simplest system in QCD: two-body problem

- Heavy quarks mostly produced in the early stages of Pb-Pb collisions.
  - Direct probes of QGP.

#### **>** Prompt J/ $\psi$ :

- > Direct production or feed-down from excited states.
- Suppression: Color screen and dynamical dissociation.
- > (**Re-**)generation: Recombination of  $c\bar{c}$  pairs in QGP.

#### > Non-prompt J/ $\psi$ :

- Produced via B-hadrons decay through weak interactions.
- ➤ Reflects the interaction between b-quark and QGP.
- Can investigate the mass dependence of interaction between heavy-quarks and the QGP medium.



#### Quarkonium measurements with the ALICE detector (Run 2)



#### Separation of prompt and non-prompt $J/\psi$



#### Non-prompt J/ $\psi$ fraction vs $p_{\rm T}$



 $\Box$   $f_{\rm B}$  measurements extended down to  $p_{\rm T} = 1.5$  GeV/c, thanks to ALICE's unique capability to measure in low  $p_{\rm T}$ .

- > Consistent with the results from ATLAS and CMS measurement in high  $p_{\rm T}$ .
- > Matching the **decreasing trend** from high towards low  $p_{\rm T}$ , similar in pp collisions.

 $\Box$   $f_{\rm B}$  in Pb–Pb collision is consistent with that in pp collisions within uncertainties, but slightly **higher** in high  $p_{\rm T}$ .

> Possibly suggesting a stronger nuclear suppression of prompt charmonia compared to beauty hadrons.

**\square** Hint of mild **centrality dependence** in  $f_{\rm B}$  measurements.

#### Non-prompt J/ $\psi$ fraction vs $p_{\rm T}$



 $\Box$  f<sub>B</sub> measurements extended down to  $p_{\rm T} = 1.5$  GeV/c, thanks to ALICE's unique capability to measure in low  $p_{\rm T}$ .

- > Consistent with the results from ATLAS and CMS measurement in high  $p_{\rm T}$ .
- > Matching the **decreasing trend** from high towards low  $p_{\rm T}$ , similar in pp collisions.

□  $f_{\rm B}$  in Pb–Pb collision is consistent with that in pp collisions within uncertainties, but slightly **higher** in high  $p_{\rm T}$ . > Possibly suggesting a stronger nuclear suppression of prompt charmonia compared to beauty hadrons.

**\square** Hint of mild **centrality dependence** in  $f_{\rm B}$  measurements.

#### Non-prompt J/ $\psi$ fraction vs $p_{\rm T}$



 $\Box$  f<sub>B</sub> measurements extended down to  $p_{\rm T} = 1.5$  GeV/c, thanks to ALICE's unique capability to measure in low  $p_{\rm T}$ .

- > Consistent with the results from ATLAS and CMS measurement in high  $p_{\rm T}$ .
- > Matching the **decreasing trend** from high towards low  $p_{\rm T}$ , similar in pp collisions.

 $\Box$   $f_{\rm B}$  in Pb–Pb collision is consistent with that in pp collisions within uncertainties, but slightly **higher** in high  $p_{\rm T}$ .

> Possibly suggesting a stronger nuclear suppression of prompt charmonia compared to beauty hadrons.

 $\square$  Hint of mild **centrality dependence** in  $f_{\rm B}$  measurements.

#### Non-prompt J/ $\psi$ fraction vs centrality

#### NEW Publication ALICE Collaboration, JHEP 02 (2024) 066



- □ The statistical precision is significantly improved compared with earlier ALICE measurements at 2.76 TeV.
  - > Thanks to the larger event sample available from LHC Run 2.
- Small centrality dependence is observed between peripheral and semi-central collisions.
- $\square$   $f_{\rm B}$  in 0–10% most central collisions decreases.
  - Stronger contribution of prompt J/ $\psi$  from (re-)generation in central collisions.

#### $J/\psi$ -hadron correlations



 $\square$  Provides additional information for J/ $\psi$  production.

#### $J/\psi$ -hadron correlation



- **Correlation functions for non-prompt** and prompt  $J/\psi$  are shown with two
- Two correlation functions for different trigger show compatible peak structures.
- Correlation patterns on both the near and away sides.

$$\sum_{\substack{x \neq 0 \\ 2.5 & 3 \\ \Delta \varphi \text{ (rad.)}}}^{x^3} \frac{1}{1.5} \frac{1}{1.5} \frac{1}{2} \frac{1}{2.5} \frac{1}{3} \frac{1}{1.5} \frac{1}{2} \frac{1}{2.5} \frac{1}{3} \frac{1}{1.5} \frac{1}{2} \frac{1}{2.5} \frac{1}{3} \frac{1}{1.5} \frac{1}{2} \frac{1}{2.5} \frac{1}{3} C(\Delta \varphi) = b + a_{\text{NS}} \times e^{-\frac{(\Delta \varphi)^2}{2\sigma_{\text{NS}}^2}} + a_{\text{AS}} \times e^{-\frac{(\Delta \varphi - \pi)^2}{2\sigma_{\text{AS}}^2}}$$

#### NEW Paper ALICE Collaboration, arXiv:2409.04364

Minimum Bias: Coincidence of signals in both V0 counters. High Multiplicity: 0.1% events with the highest multiplicity in the V0 detector. EG2DG2: The sum of energy in a sliding window  $(4 \times 4 \text{ towers})$  in EMCal above 4 GeV.





2024/9/24







### $J/\psi$ -hadron away side yield



NEW Paper ALICE Collaboration, arXiv:2409.04364

□ The PYTHIA calculations are in good agreement with the results of prompt J/ $\psi$ , but overestimate the results of non-prompt J/ $\psi$  for  $p_T$  above 15 GeV/*c*.

■ The correlated hadron yields in HM triggered events is lower than in MB events for prompt J/ $\psi$  in the  $0.15 < p_T^h < 1.0 \text{ GeV}/c$  interval.

Because of the bias introduced by the HM trigger.

Requirement of a high threshold on charged-particle multiplicity in the V0 detector acceptance

Skands, P., Carrazza, S. & Rojo, J., *Eur.Phys.J.C* 74 (2014) 3024

### $J/\psi$ -hadron away side yield



NEW Paper ALICE Collaboration, arXiv:2409.04364

■ The PYTHIA calculations are in good agreement with the results of prompt J/ $\psi$ , but overestimate the results of non-prompt J/ $\psi$  for  $p_T$  above 15 GeV/*c*.

□ The correlated hadron yields in HM triggered events is lower than in MB events for prompt J/ $\psi$  in the  $0.15 < p_T^h < 1.0 \text{ GeV}/c$  interval.

Because of the bias introduced by the HM trigger.

Requirement of a high threshold on charged-particle multiplicity in the V0 detector acceptance

Skands, P., Carrazza, S. & Rojo, J., Eur. Phys. J.C 74 (2014) 3024

#### $p_{\rm T}$ and centrality dependence of prompt J/ $\psi R_{\rm AA}$



2024/9/24

HP2024

#### $p_{\rm T}$ and centrality dependence of non-prompt J/ $\psi R_{\rm AA}$



2024/9/24

HP2024

### **Prompt** J/ $\psi$ R<sub>AA</sub> compared with models



The SHMc model<sup>[1]</sup> reproduces the prompt  $J/\psi R_{AA}$  at low  $p_T$ , while significantly underpredict the data for  $p_T > 5$  GeV/*c*. In the SHMc model, most of the produced  $J/\psi$  are thermalized, only a small contribution from the collision corona.

**D** The Dissociation model<sup>[3]</sup> provides a good description within uncertainties for  $p_{\rm T} > 5 \, {\rm GeV}/c$ .

- **The BT model**<sup>[2]</sup> describes the trend of  $R_{AA}$  with number of participants.
  - > In good agreement with data in 0-10% and 10-30% centrality classes.
  - Underpredict in peripheral collisions.

[1]A. Andronic, et al. Phys. Lett. B 797 (2019) 134836
[2]K. Zhou, et al. Phys. Rev. C 89 (2014) 054911
[3]S. Aronson, et al. Phys. Lett. B 778 (2018) 384–391

### Non-prompt J/ $\psi R_{AA}$ compared with models



POWLANG: Energy loss solely via collisional processes.

Other models: Both collisional and radiative energy loss but with different hypotheses on transport dynamics, CNM effects,  $p_{T}$ distributions and hadronization.

 $\square$  All models except POWLANG<sup>[2]</sup> describe the data within uncertainties for  $p_{\rm T} > 5$  GeV/c. Overprediction of **POWLANG** might be due to the lack of radiative energy loss contributions in model.

 $\Box$  LBT<sup>[6]</sup> and LT2<sup>[5]</sup> models are compatible with data within uncertainties in the full  $p_{T}$ .

LT1<sup>[1]</sup> model is compatible with data within uncertainties for all centrality classes.

[1]M. Yang, et al. Phys. Rev. C 107 (2023) 054917 [2]A. Beraudo, et al. JHEP 05 (2021) 279 [3]S. Shi, et al. Chin. Phys. C 43 (2019) 044101 [4] M. Nahrgang, et al. Phys. Rev. C 93 (2016) 044909 [5]S.-Q. Li, et al. Eur. Phys. J. C 81 (2021) 1035 [6]W.-J. Xing, et al. Phys. Lett. B 838 (2023) 137733 [7] D. Zigic, et al. Front. in Phys. 10 (2022) 957019

#### ITS upgrades in Run 3





The impact parameter resolution are largely reduced at midrapidity for Run 3 in both pp and Pb–Pb collisions thanks to the upgrade of ITS.

21

#### Measurement at forward rapidity in Run 3



- Muon Forward Tracker
  - ➢ Installed in Run 3.
  - $\succ$  5 disks with MAPS.
  - Measures charged tracks with high spatial resolution.
  - Provides vertex capability, allowing to measure non-prompt decay.



□ Thanks to the installation of the new muon forward tracker (MFT), the prompt/non-prompt charmonia separation is possible in LHC Run 3 also at forward rapidity (2.5 < y < 4).</p>

#### Summary

#### $> J/\psi$ -hadron correlations in pp collisions

- > Correlation patterns on both **near** and **away** sides.
- > Near-side yields associated with non-prompt J/ $\psi$  are larger than those associated to prompt J/ $\psi$ .
- > No strong multiplicity dependence observed in charm and beauty fragmentation.

#### $> R_{AA}$ of prompt/non-prompt J/ $\psi$ in Pb–Pb collisions

- > Increase towards low  $p_{\rm T}$  and most central collisions for prompt J/ $\psi$  caused by (re-)generation.
- >  $R_{AA}$  of prompt J/ $\psi$  can be described by models considering (re-)generation in low  $p_{T}$ . The models with energy loss in medium can describe the  $R_{AA}$  of non-prompt J/ $\psi$ .

#### ≻ Outlook:

- > The impact parameter **resolution** is largely **reduced** at midrapidity for Run 3 because of the **upgrade of ITS**.
- Prompt/non-prompt charmonia separation is possible in LHC Run 3 also at forward rapidity thanks to the new installed MFT detector.

# BACK UP

#### Prompt J/ $\psi$ production



**D** Both two models show an overall good agreement with data within uncertainties, in particular for  $p_{\rm T}$  below 5 GeV/c.

 $\square$  At higher  $p_{\rm T}$ , both models tend to underpredict the data, with the SHMc model showing a larger discrepancy.

> In the SHMc model most of the produced J/ $\psi$  are thermal, with only a small contribution from the collision corona.

#### Non-prompt J/ $\psi$ production



□ Models show systematically higher values compared to data.

Discrepancy larger for POWLANG, could be related to the absence of radiative processes in this model.

**CUJET3.1** is compatible with data within uncertainties for  $p_T > 5 \text{ GeV}/c$ .

#### $R_{AA}$ in semicentral collisions

