Hard Probes 2024, Nagasaki

Andrea Tavira Garc**í**a, on behalf of the ALICE Collaboration

Studies of beauty-quark production, hadronisation and cold nuclear matter effects in pp and p-Pb collisions with ALICE

September 23, 2024

Studying pQCD using heavy quarks Heavy quarks are excellent probes to test perturbative QCD

- Produced early in the collision via hard scattering processes, they experience the full evolution of the medium
- Large masses \longrightarrow Large squared momentum transfer, Q^2 , allowing us to use perturbative QCD

Factorisation approach in pQCD calculations:

Heavy quarks and hadronisation

- across collision systems
	- \circ Extracted from e^+e^- and ep measurements
- One way to study hadronisation is through particle yields and ratios:
	- \circ Meson-to-meson: measurements in pp and p -Pb are consistent
		- with e^+e^- and ep
	- \circ Baryon-to-meson: differences between e^+e^- and pp (or p-Pb)!

• Fragmentation functions are generally considered to be universal

- Existence of unobserved excited baryon states
- Colour reconnection beyond leading colour approximation
- Coalescence

Heavy-flavour baryon-to-meson ratios show a strong enhancement at low p_{τ} , even in pp. Some possible explanations include: T

- across collision systems
	- \circ Extracted from e^+e^- and ep measurements
- One way to study hadronisation is through particle yields and ratios:
	- \circ Meson-to-meson: measurements in pp and p -Pb are consistent
		- with e^+e^- and ep
	- \circ Baryon-to-meson: differences between e^+e^- and pp (or p-Pb)!

ALI-PUB-567876

More studies are needed

• Fragmentation functions are generally considered to be universal

Heavy quarks and hadronisation

Effects caused by the presence of nuclei in the colliding system

Initial-state effects

- PDFs are modified depending on *x*. These effects can be described by **nuclear PDFs** (nPDFs) [1]
	- Gluon saturation could cause this modification at low *x* [2]
- Enhanced initial-state radiation, leading to energy loss [3]
- Soft partonic collisions that cause momentum broadening [4]

Final-state effects

- Flow-like effects from collective motion
- Quark recombination enhancement

[1] Khalek, R.A., Ethier, J.J. & Rojo, J. Eur. Phys. J. C 79, 471 [\(2019\).](https://link.springer.com/article/10.1140/epjc/s10052-019-6983-1#citeas) [2] *P. Tribedy, R. Venugopalan,* [Phys.Lett.B](https://arxiv.org/abs/1112.2445) 718 (2013) 1154 [3] *I. Vitev*, [Phys.Rev.C75](https://arxiv.org/abs/hep-ph/0703002) (2007), 064906 [4] *X. Wang*, [Phys.Rev.C](https://arxiv.org/abs/nucl-th/9812021) 61 (2000), 064910

Andrea Tavira García de Latitude de L

ـــا [H](https://link.springer.com/article/10.1007/JHEP12(2019)092) \blacksquare $\overline{\mathbf{U}}$

CNM effects can be investigated by studying the nuclear modification factor, R_{out} : pPb

$$
R_{\rm pPb} = \frac{1}{A_{\rm Pb}} \frac{\mathrm{d}^2 \sigma_{\rm pPb} / \mathrm{d}p_{\rm T} \mathrm{d}y}{\mathrm{d}^2 \sigma_{\rm pp} / \mathrm{d}p_{\rm T} \mathrm{d}y}
$$

Andrea Tavira García **Hard Probes 2024**

 $\overline{}$ $\overline{9}$ \blacktriangleright $\overline{\mathcal{C}}$ $\overline{}$ $\boldsymbol{\mathsf{N}}$ \bigcirc $\overline{}$ 9)

> \bigcirc \overline{O} $\overline{\mathsf{C}}$

Initial-state effects

- PDFs are modified depending on *x*. These effects can be described by **nuclear PDFs** (nPDFs) [1]
	- Gluon saturation could cause this modification at low *x* [2]
- Enhanced initial-state radiation, leading to energy loss [3]
- Soft partonic collisions that cause momentum broadening [4]

Final-state effects

- Flow-like effects from collective motion
- Quark recombination enhancement

Effects caused by the presence of nuclei in the colliding system

- Tracking
- Vertexing

Inner Tracking System (ITS):

V0 detectors:

• Triggering

 \bullet D^o \rightarrow K π ⁺ \bullet D⁺ \longrightarrow K $^{\text{-}}\pi$ ⁺ π ⁺ $D_s^* \longrightarrow \Phi \pi^* \longrightarrow K^* K^- \pi^*$ $Λ^{\ast}_{c} \longrightarrow pK^{0}_{s} \longrightarrow p\pi^{+}\pi^{-}$ $\Lambda_c^* \longrightarrow pK^-\pi^+$ Charm hadrons are reconstructed using the central barrel Rapidity coverage: |*η*| < 0.9 HF hadron reconstruction in this talk ϵ \rightarrow μ _S \overline{C}

- FONLL + PYTHIA 8 decayer is consistent with the data for all D-mesons
- GM-VFNS underestimates the measurements at low *p* T
- **TAMU + PYTHIA 8** agrees with the data for D° and D^{\dagger} , but overestimates the data for D^{\dagger}_S

- Weighted average of the results $from \Lambda_c^+ \rightarrow pK_s^0 \rightarrow p\pi^+\pi^-$ and $\Lambda_c^* \rightarrow pK^-\pi^+$
- Results compared to FONLL + PYTHIA 8 and TAMU + PYTHIA 8
	- Both tend to underestimate the data in the $2 < p < 4$ GeV/c interval T

Non-prompt $Λ⁺_c$ cross-section

Comparison with FONLL Comparison with TAMU

FONLL: *M. Cacciari, M. Greco, P. Nason,* JHEP 9805 [\(1998\)](https://arxiv.org/abs/hep-ph/9803400) 007 GM-VFNS: *P. Bolzoni, G. Kramer,* Nucl. Phys. B 872, 253 [\(2013\)](https://arxiv.org/abs/1212.4356) TAMU: M. *He and R. Rapp*, Phys. Rev. Lett. 131 (2023) [012301](https://arxiv.org/abs/2209.13419)

- The cross section vs. centre-of-mass energy is well described by pQCD, especially NNLO
- Results are compatible with pQCD but tend to lie close to the upper boundary of the uncertainty bands

bb production cross section $($ pp $)$ $| \cdot |$

p_τ -integrated measurement at midrapidity based on the production cross sections of D°, D⁺, D₅ and Λ⁺_c $_\mathsf{T}$ integrated measurement at midrapidity based on the production cross sections of $\mathsf{D}^\ast,\mathsf{D}$, D_S and $\mathsf{\Lambda}_\mathsf{C}$ -

[arXiv:2402.16417](https://arxiv.org/abs/2402.16417)

Meson-to-meson ratios in pp

D'/D^o at different centre-of-mass energies D'/D^o vs. theoretical predictions

9

Compatible results at different collision energies Similar ratios for prompt and non-prompt contributions Results are well described by FONLL + PYTHIA 8

Andrea Tavira García **Hard Probes 2024**

Strange meson-to-meson ratio

[arXiv:2402.16417](https://arxiv.org/abs/2402.16417)

Most non-prompt Λ_c^* baryons come from Λ_b^0 , rather than

FONLL + PYTHIA 8 provides a good description at $p_T > 4$ T

• PYTHIA 8 CR-BLC accurately describes the data

Baryon-to-meson ratio ipp just

Non-prompt $\Lambda_c^{\dagger}/$ non-prompt D^{\dagger} ratio vs. theoretical predictions

- B mesons
- GeV/*c*
-

\bigotimes D^o non-prompt fraction (Run 3) $(pp)^{1/12}$

-
- Increased precision compared to Run 2 • More granular results are achieved, with an extension down to $p = 0$ • Tighter constraints to hadronisation models: Overall, PYTHIA tunes seem to overestimate the data EPOS 4 tends to underestimate the data T
-
- -
	-

Non-prompt Λ_c^+ fraction (Run 3) $(p_p)^{1/13}$

- **Run 3 results are more granular** and provide lower p ₋ reach T
- PYTHIA Monash tends to underestimate the data
- PYTHIA CR-BLC modes provide a better description of the data compared to the Monash tune

Non-prompt D^{\dagger} / Non-prompt D^{\dagger} pp vs. p-Pb

- NEW on ArXiv!
- Non-prompt D^* / non-prompt D^0 production yield ratio is compatible with pp results
- Compatible results for prompt and non-prompt $\Lambda_{\mathsf{C}}^{\mathsf{+}}$ /D $^{\mathsf{0}}$

[arXiv:2407.10593](https://arxiv.org/abs/2407.10593) Andrea Tavira García Hard Probes 2024

Λ_c^*/D^0 prompt vs. non-prompt

Similar hadronisation modifications for charm and beauty?

R _{pPb} of Λ_c^*

Prompt Λ_c^* shows deviation from unity \rightarrow Effects beyond nPDFs (hadronisation? expanding medium?) Non-prompt Λ_c^* 's uncertainties are too large to

- Compatible with unity for both prompt and non-prompt
- draw a conclusion

R _{pPb} of D-mesons R _{pPb} of Λ_c^*

Nuclear modification factor $\left(p-p_{b}\right)$ 16

*p*_T integrated *R* _pp_b of D-mesons and J/Ψ vs. rapidity

[arXiv:2407.10593](https://arxiv.org/abs/2407.10593) Andrea Tavira García Hard Probes 2024

• Results are compared to B⁺ calculations using HELAC-onia with different sets of PDFs \circ They all provide good descriptions of the

The effects of CNM in non-prompt charm particles, if any, are small

All data points for the considered particles are consistent with each other and aligned with

- - - data
	- unity

HELAC-onia: *H.-S. Shao,* Comput. Phys. Commun. 184 (2013) [2562–2570](https://www.sciencedirect.com/science/article/pii/S0010465513001938) EPPS16: *K. J. Eskola, P. Paakkinen, et al.*, Eur. Phys. J. C 77 [\(2017\)](https://link.springer.com/article/10.1140/epjc/s10052-017-4725-9) 163 nCTEQ15: *K. Kovarik et al.*, Phys. Rev. D 93 (2016) [085037](https://arxiv.org/abs/1509.00792) EPPS16*: *A. Kusina, J.-P. Lansberg et al*., Phys. Rev. Lett. 121 (2018) [052004](https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.121.052004)

Similar hadronisation effects are observed in pp and p—Pb collisions. Dedicated model calculations are

pQCD calculations can adequately describe non-prompt D-meson cross sections and meson-to-meson ratios in pp, but do not properly describe baryon cross sections and **baryon-to-meson** ratios in pp in all p_{r} ranges T

Studies on the nuclear modification factor show that the effects of CNM on non-prompt charm hadrons are small

More results to come from Run 3 data samples, allowing for better constraints on theoretical models

Andrea Tavira García **Hard Probes 2024**

- 01
- needed for p—Pb 02 03
	-

Thank you, ありがとう!

Any questions?

- FONLL, *[Vitev](https://arxiv.org/abs/0904.0032) et al.*, and CGC follow the same trend as the data
- *[Kang](https://arxiv.org/abs/1409.2494) et al*. is excluded by the data for *p <* 4 GeV/*c* T

<u>JHEP 1912 [\(2019\)](https://link.springer.com/article/10.1007/JHEP12(2019)092) 092</u> Andrea Tavira García **Hard Probes 2024**

Models suggest the existence of a peak at low *p* which is not visible in data T

Nuclear modification factor vs. models (p–Pb)|18

Models that only include CNM effects Transport models

-
-

$\Lambda_{\rm c}^{*}$ / D $^{\rm o}$ ratio vs. theoretical predictions

• Data is compared with TAMU + PYTHIA 8 calculations Prompt $\Lambda_{\mathbf{c}}^*$ are well described by the model, but that is not the case for non-prompt Λ_c^* c

It employs a statistical hadronisation model (SHM) using a relativistic quark model (RQM) input

About the TAMU model $M. He and R. Rapp,$ 20

M. He and R. Rapp, Phys. Rev. Lett. 131 (2023) 012301

RQM provides a set of unobserved b-hadron states beyond the ones currently present in the PDG, which are needed to

describe the data

Beauty fragmentation functions are calculated using thermal

densities

Relative abundances of beauty-hadrons depend on their masses and a universal hadronisation temperature