

Dilepton emission in heavy ion collisions and equilibrium of QCD matter

Xiang-Yu Wu In collaboration with Lipei Du, Charles Gale and Sangyong Jeon

Based on e-Print: 2407.04156 [nucl-th]

Hard Probe 2024, Nagasaki, Japan September 24, 2024

Canadian Institute of Nuclear Physics

Institut canadien de physique nucléaire

McGill University

Relativistic Heavy Ion Collision

Goal: explore and study the properties of QGP.

[ALICE, Eur.Phys.J.C 84 (2024) 8, 813]

Relativistic Heavy Ion Collision

Goal: explore and study the properties of QGP. Probes:

• Soft hadrons: $T < T_{frz}$, indirect probe.

[ALICE, Eur.Phys.J.C 84 (2024) 8, 813]

Relativistic Heavy Ion Collision

Goal: explore and study the properties of QGP. Probes:

- Soft hadrons: $T < T_{\rm frz}$, indirect probe.
- EM probes $(\gamma/l\bar{l})$: $T > T_{frz}$, direct probe.

[ALICE, Eur.Phys.J.C 84 (2024) 8, 813]

 $\tau = 0^+$ fm

Initial condition: IP-Glasma

- Color glass condensates.
- Evolved by Yang-Mills equations.

[Schenke, Tribedy & Venugopalan, PRL 108, 252301 (2012)] [Schenke, Tribedy & Venugopalan, PRC 86, 034908 (2012)]

 $\tau = 0^+$ fm

 $\tau = 0.1 \text{ fm}$

Initial condition: IP-Glasma

- Color glass condensates.
- Evolved by Yang-Mills equations.

Pre-equilibrium stage: KøMPøST

 $T^{\mu\nu}(\tau, \mathbf{x}) = \bar{T}^{\mu\nu}(\tau, \mathbf{x}) + \delta T^{\mu\nu}(\tau, \mathbf{x})$

- Background and perturbation.
- Kinetic theory scaling curve and linear response.

[Kurkela, Mazeliauskas, Paquet, Schlichting & Teaney, PRC 99, 034910 (2019)] [Kurkela, Mazeliauskas, Paquet, Schlichting & Teaney, PRL122, 122302 (2019)]

$\tau = 0^+ \text{ fm}$	Initial condition: IP-Glasma
	 Color glass condensates. Evolved by Yang-Mills equations.
$\tau = 0.1 \text{ fm}$	Pre-equilibrium stage: KøMPøST
	 Background and perturbations. Kinetic theory scaling curve and linear re
$\tau = 0.8 \text{ fm}$	Hydrodynamic evolution: MUSIC
	 (2+1)-D event-by-event 2nd viscous hydre Shear viscosity η/s = 0.12 and bulk visco HotQCD+hadron gas equation of states.
$\tau \approx 10 \text{ fm}$	

esponse.

odynamics model. cosity $\zeta/s(T)$.

[Paquet, Shen, Denicol, Luzum, Schenke, Jeon & Gale, PRC 93, 044906 (2016)] [Schenke, Jeon & Gale, PRC 82, 014903 (2010)] [Schenke, Jeon & Gale, PRL 106, 042301 (2011)] [Gale, Paquet, Schenke & Shen, PRC 105, 014909 (2022)]

$\tau = 0^+ \text{ fm}$	Initial condition: IP-Glasma
	 Color glass condensates. Evolved by Yang-Mills equations.
$\tau = 0.1 \text{ fm}$	Pre-equilibrium stage: KøMPøST
$\tau = 0.8 ~\mathrm{fm}$	 Background and perturbations. Kinetic theory scaling curve and linear re Hydrodynamic evolution: MUSIC
	 (2+1)-D event-by-event 2nd viscous hydr Shear viscosity η/s = 0.12 and bulk visc HotQCD+hadron gas equation of states.
$\tau \approx 10 \ {\rm fm}$	Hadronic cascade: URQMD
	Elastic collisions.Resonance formation and decays.

esponse.

rodynamics model. cosity $\zeta/s(T)$.

[S. A. Bass et al, Prog. Part. Nucl. Phys. 41, 255–369 (1998)]

Model Calibration

- Hydrodynamic results agree well with hadron multiplicity in all centrality bins.
- Small discrepancy in mean transverse momentum $\langle p_T \rangle$ and anisotropic flow $v_n \{2\}$ originates from vanishing bulk viscosity in IP-Glasma and KøMPøST.
- The discrepancy increases in peripheral collision due to shorter lifetime in hydrodynamic phase.

Dilepton Production

- Initial condition: IP-Glasma $\tau = 0^+$ fm
- Pre-equilibrium stage: KøMPøST $\tau = 0.1 \text{ fm}$

 $\tau = 0.8 \text{ fm}$

Hydrodynamic evolution: MUSIC

Hadronic cascade: URQMD $\tau \approx 10 \text{ fm}$

Drell-Yan dilepton

DYTurbo package: NLO order in p+p collision.

In A+A collisions

dN_{ee}^{DY}	$d\sigma_{ee}^{DY;pp}$	N _{coll}
dMdy		σ_{in}^{pp}

nPDF: EPPS16nlo-CT14nlo-Pb208.

Thickness function: MC-Glauber.

[Camarda et al., EPJC 80, 251 (2020)] [Eskola, Paakkinen, Paukkunen & Salgado, EPJC 77, 163 (2017)] [Loizides, Kamin & Enterria, PRC 97, 054910 (2018)]

Dilepton Production

- Initial condition: IP-Glasma $\tau = 0^+$ fm
- Pre-equilibrium stage: KøMPøST $\tau = 0.1 \text{ fm}$

 $\tau = 0.8 \text{ fm}$

Hydrodynamic evolution: MUSIC

 $T(x), U^{\mu}(x)$

 $\tau \approx 10 \text{ fm}$ Hadronic cascade: URQMD

[Churchill, Du, Gale, Jackson & Jeon, PRC 109, 044915 (2024), PRL 132, 172301 (2024)]

Drell-Yan dilepton Thermal dilepton $\frac{dN_{l\bar{l}}}{MdMdy'} = \int d^4x p_T' dp_T' d\phi' \frac{d\Gamma_{l\bar{l}}}{d^4P} \bigg|$ $|_{P^{\mu} = \Lambda^{\nu}_{\mu}(U(X))P'^{\nu}}$ $\frac{dN_{l\bar{l}}}{p_T'dp_T'dy'} = \int d^4x M dM d\phi' \frac{d\Gamma_{l\bar{l}}}{d^4P}$ $T(x), U^{\mu}(x)$ $P^{\mu} = \Lambda^{\nu}_{\mu}(U(X))P^{\prime\prime}$ $d\Gamma_{l\bar{l}}$ the differential dileption emission rate at NLO with finite μ_B . d^4P LO $\mathcal{O}(1)$ \sim www MMM MMM $\mathcal{O}\left(\alpha_{s}\right)$ NLO www LPM \sim ...

Dilepton Production

- Initial condition: IP-Glasma $\tau = 0^+$ fm
- Pre-equilibrium stage: KøMPøST $\tau = 0.1 \text{ fm}$

 $\tau = 0.8 \text{ fm}$

Hydrodynamic evolution: MUSIC

Hadronic cascade: URQMD $\tau \approx 10 \text{ fm}$

[Churchill, Du, Gale, Jackson & Jeon, PRC 109, 044915 (2024), PRL 132, 172301 (2024)]

Drell-Yan dilepton Thermal dilepton

$$\begin{aligned} \frac{dN_{l\bar{l}}}{MdMdy'} &= \int d^4x p_T' dp_T' d\phi' \frac{d\Gamma_{l\bar{l}}}{d^4 P} \bigg|_{P^{\mu} = \Lambda^{\nu}_{\mu}(U(X))P'^{\nu}} \\ \frac{dN_{l\bar{l}}}{p_T' dp_T' dy'} &= \int d^4x M dM d\phi' \frac{d\Gamma_{l\bar{l}}}{d^4 P} \bigg|_{P^{\mu} = \Lambda^{\nu}_{\mu}(U(X))P''} \end{aligned}$$

 $d\Gamma_{l\bar{l}}$ d^4P :

 $T(x), U^{\mu}(x)$

 $T(x), U^{\mu}(x)$

the differential dileption emission rate at NLO with finite μ_B .

Chemical Equilibrium

- The gluon fields dominate in the early stage.
- Quarks and anti-quarks are produced via $gg \rightarrow q\bar{q}$ and $g \rightarrow q\bar{q}$.

• The effective suppression factor $SF(T, \tau)$ is introduced in relation to chemical relaxation time $\tau_R = 4\pi \eta/Ts$.

Systems with higher temperatures reach chemical equilibrium faster than those at lower temperatures.

$$\frac{dN_{l\bar{l}}}{MdMdy'} = \int dV \, \mathbf{SF}(T,\tau)^n \frac{d\Gamma_{l\bar{l}}}{d^4 P} \bigg|_{P^\mu = \Lambda^\nu_\mu(U(X))P'^\nu} p_T' dp_T' d\phi'$$
$$\frac{dN_{l\bar{l}}}{p_T' dp_T' dy'} = \int dV \, \mathbf{SF}(T,\tau)^n \frac{d\Gamma_{l\bar{l}}}{d^4 P} \bigg|_{P^\mu = \Lambda^\nu_\mu(U(X))P''} MdMd\phi'$$

Here n = 0, 1, 2.

Dilepton *M* **spectrum**

- Thermal dilepton production dominates in the low-mass region (LMR).
- The pre-equilibrium dileptons are the dominant source over thermal dileptons in the intermediate mass region (IMR).
- Drell-Yan dileptons are consistently smaller than the preequilibrium contribution until the high-mass region (HMR).
- Dilepton production during the pre-equilibrium phase will be sensitive to the power of suppression factor for chemical equilibrium.

Oscar's Talk@Tue 9:00AM.

[Oscar Garcia-Montero, Philip Plaschke, Sören Schlichting, e-Print: 2403.04846 [hep-ph]]

Dilepton $v_n^{ee} \{SP\}(M)$

• The scalar-product (SP) method:

$$v_n^{l\bar{l}}\{\mathrm{SP}\}(X) = \frac{\left\langle v_n^{l\bar{l}}(X)v_n^h \cos\left\{n\left[\Psi_n^{l\bar{l}}(X) - \Psi_n^h\right]\right\}\right\rangle}{\sqrt{\left\langle \left(v_n^h\right)^2\right\rangle}}$$

- The total $v_2^{ee}(M)$ will be suppressed due to the almost zero momentum anisotropy in the pre-equilibrium stage.
- For the higher order of the suppression factor, the total dilepton flow $v_2^{ee}(M)$ moves closer to that of thermal dileptons.

Dilepton *p*_{*T*} **spectra**

- By carefully selecting the invariant mass window, it is possible to reveal the pre-equilibrium stage.
- 0 < M < 1 GeV:

 - the thermal dilepton production dominates at low p_T region. • dilepton from the pre-equilibrium stage becomes dominant from intermediate p_T region.
- 2 < M < 3 GeV:
 - the pre-equilibrium dilepton is comparable to thermal dilepton production in the low p_T region.

• the pre-equilibrium dilepton consistently exceeds both thermal dilepton and Drell-Yan dilepton production.

Dilepton $v_n^{ee} \{SP\}(p_T)$

- Total elliptic flow $v_2^{ee}(p_T)$ is highly sensitive to the effects of chemical equilibrium.
- 0 < M < 1 GeV:
- 2 < M < 3 GeV:

• after considering the pre-equilibrium stage, the total dilepton flow $v_2^{ee}(p_T)$ is significantly suppressed.

• the total dilepton elliptic flow $v_2^{ee}(p_T)$ shows a noticeable reduction compared to that in the IMR.

Summary

- Dilepton observables offer an opportunity to explore quark production of the pre-equilibrium stage.
- Dilepton flow could help constrain the effects of chemical equilibrium during the pre-equilibrium stage in the future.
- An analysis of thermal dilepton production and anisotropic flow based on NLO order emission rate is performed in Pb+Pb collisions at a LHC collision energy of $\sqrt{s_{NN}} = 5.02$ TeV.
- The pre-equilibrium dilepton contribution dominates in the IMR, exceeding both Drell-Yan and thermal dilepton production.
- Dilepton production is slightly affected by chemical equilibrium.

Backup

DYTurbo vs Pythia 6

Pythia 6:

PDF CTEQ5L

Bands: K factor, effectively account for higher order corrections.

DYTurbo: Bands:

NLO, factorization and renormalization scales.

Upper limits: $2m_{ll}$, lower limit: $0.5m_{ll}$.

Parton distribution functions and fragmentation functions limits scale $Q \sim 1 \text{GeV}$.

20

Chemical Equilibrium

Introduce an effective suppression factor (SF) to include the process of the establishment of chemical equilibrium

$$SF(T,\tau) = 1 - e^{-A\frac{\tau}{\tau_R(T)}}$$

with chemical relaxation time

 $\tau_R = 4\pi\eta/Ts$

The chemical equilibrium is found to be $\tau_{chem} = 1.2\tau_R$. The constant A can be determined by requiring SF (τ_{chem}) = 0.9.

[Kurkela & Mazeliauskas, PRL 122, 142301 (2019), PRD 99, 054018 (2019)]

How to combine NLO and LPM

 $\mathcal{O}\left(\alpha_{s}^{i}\right), \quad i \geq 2$

Model

A blessing and a curse

Dilepton from different stages are a blend together from experimental side.

- The low-mass region (LMR, 0 < M < 1.1 GeV): the decays of light mesons.
- The intermediate mass region (IMR, 1.1 < M < 3 GeV): thermal dilepton and decays of open heavy flavor.
- The high-mass region (HMR, M > 3 GeV): Drell-Yan process and quarkonium decays.

A blessing and a curse

Dilepton from different stages are a blend together from experimental side.

