

Measurements of thermal dielectron in isobar collisions at $\sqrt{s_{NN}} = 200$ GeV with STAR

Jiaxuan Luo for the STAR Collaboration

University of Science and Technology of China Nagasaki, Japan, 22nd – 27th, Sep. 2024

A "Little Bang" in Heavy Ion Collision

 $C. Shen \ https://u.osu.edu/vishnu/2014/08/06/sketch-of-relativistic-heavy-ion-collisions$

Deconfined QCD matter produced at extreme high temperature and/or baryon density

□ In laboratory: heavy ion collisions

Temperature, as one of key properties of medium, still poorly known

How to measure temperature

How to measure temperature

Jiaxuan Luo@Hard Probes 2024

How to measure temperature

Thermal Dileptons

Thermometer: extract temperature from mass spectra
 Chronometer: predict lifetime from integrated yield

Jiaxuan Luo@Hard Probes 2024

Signal and Physical background

Inclusive signal (combinatorial background subtracted)

Interested signals:

- QGP radiation
- In-medium *ρ* decays

Physical background (Cocktails):

- $\omega, \phi, J/\psi \rightarrow e^+e^-$
- $\pi^0, \eta, \eta' \rightarrow \gamma e^+ e^-$
- $\omega \rightarrow \pi^0 e^+ e^-$
- $\phi \rightarrow \eta e^+ e^-$
- $c\overline{c}, b\overline{b} \to e^+e^-X$
- Drell-Yan

Physical background can be determined using the well-established cocktail simulation techniques

- Two-body & Dalitz decays: Monte Carlo simulation through the dielectron decay channel, and scaling hadron invariant yields
- > Heavy-flavor decays & Drell-Yan process: PYTHIA simulation in p + p collisions, and scaling by the N_{coll} to AA yields

Thermal dileptons = Inclusive signal – Physical background

The Solenoid Tracker At RHIC

TOF: Time of flight, particle identification

TPC: Tracking, momentum and energy loss

Collision species (taken in 2018, $\sqrt{s_{NN}} = 200 \text{ GeV}$)

- ${}^{96}_{44}\text{Ru} + {}^{96}_{44}\text{Ru} (\sim 2\text{B events})$
- ${}^{96}_{40}$ Zr+ ${}^{96}_{40}$ Zr (~2B events)

Fully corrected Data vs. Cocktail

Clear enhancement compared to cocktail contributions in both low mass region (LMR) and intermediate mass region (IMR)

Temperature extraction from LMR

Excess = data - cocktail

Fitting function: $(a * BW + b * M^{3/2}) \times e^{-M/T}$

- Excess mass spectra in Low Mass
 Region normalized by the charged particle multiplicity
- Time-average temperature over the fireball evolution
- → $\sim 3.0 \sigma$ higher than the pseudo critical temperature T_{pc} (156 MeV)

 $T_{LMR}^{Isobar \ 200 GeV} = 199 \pm 6 \text{ (stat.)} \pm 13 \text{ (sys.)} \text{ MeV}$

9/24/2024

T_{pc}: HotQCD, Phys. Lett. B 795, 15-21 (2019)

Temperature extraction from IMR

Excess = data - cocktail

Fitting function: $M^{3/2} \times e^{-M/T}$

- Excess mass spectra in Intermediate
 Mass Region normalized by the charged particle multiplicity
- ∼4.7 σ higher than T_{pc} , indicating that the emission is predominantly from deconfined QGP phase

 $T_{IMR}^{200GeV} = 293 \pm 11$ (stat.) ± 27 (sys.) MeV

T_{pc}: HotQCD, Phys. Lett. B 795, 15-21 (2019)

9/24/2024

Temperature vs. N_{part}

No clear centrality dependence in both mass regions

- > Temperature from low mass region is higher than the pseudo critical temperature
- > Temperature from intermediate mass region is higher than that in low mass region

Excess dielectron spectra vs. collision system

NA60: EPJC 59, 607–623 (2009) STAR 27 & 54.4 GeV, arXiv: 2402.01998

Excess dielectron spectra vs. collision system

NA60: EPJC 59, 607–623 (2009) STAR 27 & 54.4 GeV, arXiv: 2402.01998

Temperature vs. μ_B

Thermal dielectrons in LMR:

- > T_{LMR} at 27 & 54.4 GeV is close to the T_{pc} and T_{ch}
 - \checkmark Emitted form the hadronic phase
 - \checkmark Dominantly around the **phase transition**
- T_{LMR} at 200 GeV is higher than the T_{pc} and T_{ch}
 ✓ Hint of higher QGP contribution

Thermal dielectrons in IMR:

- \succ T_{IMR} is higher than T_{LMR}, T_{pc} and T_{ch}
- Emitted from the partonic phase
- T_{ch} : Chemical freeze-out temperature T_{pc} : Pseudo critical temperature

Excess Yield vs. N_{part}

Excess yield vs. $\sqrt{s_{NN}}$

Normalized excess yield

Integrated excess yield at different $\sqrt{s_{NN}}$

- > Normalized by π^0 yield
- → Hint of a decreasing trend from high to low $\sqrt{s_{NN}}$ (higher μ_B)

 STAR: Phys. Rev. C 107, L061901 (2023)
 STAR: Phys. Lett. B 750, 64 (2015)

 HADES: Nat. Phys. 15, 1040–1045 (2019)
 NA60: EPJC 59, 607–623 (2009)

 R. Rapp, Phys. Rev. C 63, 054907 (2001)
 H. van Hees and R. Rapp, Phys. Rev. Lett. 97, 102301 (2006)

 9/24/2024
 Jiaxuan Luo@Hard Probes 2024

Summary

Excess mass spectra in isobar collisions at $\sqrt{s_{NN}} = 200 \text{ GeV}$

> Temperature measurement:

- **T**_{LMR}: 199 \pm 6 (stat.) \pm 13 (sys.) MeV
- ✓ ~3.0 σ higher than T_{pc}, hint of higher QGP contribution than at lower energies
- **T**_{IMR}: 293 ± 11 (stat.) ± 27 (sys.) MeV
- ✓ ~4.7 σ higher than T_{pc}, strong evidence for the existence of QGP
- \checkmark Temperature measurement at 200 GeV without distortion by medium flow

> Thermal dielectron yields

- \square Integrated excess yield increase with N_{part}
- \square Hint of a decreasing trend with decreasing $\sqrt{s_{NN}}$ in normalized integrated excess yield

Backup

Systematic uncertainty

Duke

PHSD

 $p_{\rm T} ({\rm GeV}/c)$

1.4 E

1.2

0.8

0.6

0.4

0.2

(D)

Cross section: STAR, arXiv: 2402.01998 *R*_{AA}: STAR, Eur. Phys. J. C 82, 1150 (2022) Duke model: Phys. Rev. C 92, 024907 (2015) PHSD model: Phys. Rev. C 78, 034919 (2008)

- The extracted temperature difference to default will the systematic uncertainty of temperatures
 cc cross section as a function of collision energy
 cc decorrelation: the angles of the single electron and positron are randomly assigned
- □ Charm R_{AA} reweight: re-weight the p_T of the e^+ and e^- with the theoretical predictions from the Duke model and the PHSD model

Jiaxuan Luo@Hard Probes 2024

