Measurement of Breit-Wheeler process, light-by-light scattering and searches for axion-like particles in UPC PbPb @ 5.02TeV at CMS

Pranati Jana, IIT Madras for the CMS collaboration

CMS-PAS-HIN-21-015

22-27th September, Hard Probes 2024, Nagasaki

Outline

- Introduction
- Signal selection
- Results
 - Breit-Wheeler (B-W) process
 - Light-by-light (LbyL) scattering
 - Limits on axion-like particles (ALPs) production
- Summary

Outline

Light-by-light Scattering

- Fundamental quantum-mechanical process proceeds through virtual one-loop box diagrams.
- In ultra-peripheral collisions (UPC), cross-section enhanced by Z^4 , Z = 82 for Pb

HardProbes 2024, Nagasaki

Pranati Jana

- Evidence by ATLAS (2017) and CMS (2019),
 - observation by ATLAS (2019) in UPC PbPb collisions
- From ATLAS measurement, $\sigma_{fid}(\gamma\gamma \rightarrow \gamma\gamma) = 120 \pm 17$ (stat)
 - $\pm 13(syst) \pm 4(lumi)$ nb is ≈ 1.5 time higher than predicted

Introduction

Searches for Axion-Like Particles

• Exclusive $\gamma\gamma \rightarrow \gamma\gamma$ process also a clean channel to search for BSM particles such as spin-0 axion-like particles

HardProbes 2024, Nagasaki Pranati Jana 23/09/2024

• CMS PbPb UPC (2019) set first competitive limits in ALPs production ($\gamma\gamma \rightarrow a \rightarrow \gamma\gamma$) in the 5-90 GeV mass range. ATLAS (2019) measurement now superseded except in the lowest mass

Introduction

Other Exclusive Processes

Breit-Wheeler process (B-W)

- Both electron and positron misidentified as photons
- One of the background for light-by-light process
- Discrepancy between data and Superchic in higher |yee| and at

 $|\cos\theta^*| \approx 1$ from ATLAS measurement

HardProbes 2024, Nagasaki Pranati Jana 23/09/2024

Central exclusive production (CEP)

- Gluon exchanges between the Pb ions.
- Photons are not exactly back to back, high

Introduction

Signal Selection

- Modified low $E_T \gamma/e$ reconstruction to go down to $E_T > 2 \text{ GeV}$
- Two well reconstructed electrons/photons: $E_T > 2$ GeV, $|\eta| < 2.2$, invariant mass m^{ee, $\gamma\gamma$} > 5 GeV, p^{ree, $\gamma\gamma$} < 1 GeV, acoplanarity ($A_{\Phi} = 1 - \Delta \Phi^{ee,\gamma\gamma}/\pi$) < 0.01
- Excluding any other neutral particles and charged particles
- Less than 3 neutron emissions in both side Zero degree calorimeters

Signal selection

Breit-Wheeler Process

- 19689 dielectron events passing all selections
- Total systematic uncertainty 6.8% mainly dominated by trigger scale factor

 $\sigma_{\rm fid}(\gamma\gamma
ightarrow {
m e}^+{
m e}^-) = rac{N^{
m ee,data}}{C^{
m ee}\mathcal{L}_{
m int}} = 271.5 \pm 1.9 \, ({
m stat}) \pm 18.3 \, ({
m syst}) \, \mu{
m b}$

Theoretical predictions:

STARLIGHT 3.13: 251µb

SUPERCHIC 3.03 + FSR (PHOTOS++) : 261µb

gamma-UPC/MG5 + FSR (PY8) : $265 \mu b$

CMS-PAS-HIN-21-015

HardProbes 2024, Nagasaki Pranati Jana 23/09/2024

- Superchic + FSR describes well the acoplanarity tail
- Negligible background

B-W Process : Detector Level Distribution

 Overall good agreement in the detector level distributions, Superchic + FSR (Photos++) describes the p_Tee tail better than Starlight due to the adding of FSR

HardProbes 2024, Nagasaki

Pranati Jana

23/09/2024

B-W Process : Neutron Emission Probability

- Events are categorized based on the neutron multiplicity and compared with predictions
- Probability ratios of different neutron multiplicities to the inclusive are in good agreement with Superchic 4.2 and Starlight 3.13
- Statistical uncertainty ± 2% uncertainty for neutron pileup correction

CMS-PAS-HIN-21-015

B-W Process: Unfolded Distribution

- Unfolded kinematic distributions compared with Superchic 3.03+FSR, gamma-UPC/MG5+FSR and Starlight 3.13, default unfolding performed with Superchic 3.03+FSR
- Average ±5% and in the tail ±15% uncertainty due to the unfolding added with the rest of systematics
- Within uncertainties very good agreement between data and predictions except the Starlight in $p_{T}{}^{ee}$

MC

Data/I

CMS-PAS-HIN-21-015

HardProbes 2024, Nagasaki | Pranati Jana 23/09/2024

Light-by-light Process : Background Estimation

Background estimation:

- Breit-Wheeler :
 - Averaging Superchic and Starlight MC to increase statistics

- CEP :
 - Large theoretical uncertainties on cross section
 - Normalized to data in the acoplanarity tail ($A_{\phi} > 0.015$)

Results $(\gamma \gamma \rightarrow \gamma \gamma)$

11

LbyL Process : Detector Level Distribution

Good agreement in the detector level distributions between data, signal and background MCs

CMS-PAS-HIN-21-015

HardProbes 2024, Nagasaki Pranati Jana

LbyL Process

• In the $A_{\phi} < 0.01$ region, total 26 data, 12.8 signal MC, 10.1 CEP MC, 1.9 QED e⁺e⁻ events **Systematic Uncertainties**

Background normalisation	15%
Background shape	14%
Exclusive diphoton efficiencies	12.5%
Luminosity	1.5%
Total (statistical/nonstatistical)	24% (15%/19%

$$\sigma_{\rm fid}(\gamma\gamma \to \gamma\gamma) = \frac{N^{\gamma\gamma,\rm data} - N^{\gamma\gamma,\rm bkg}}{C^{\gamma\gamma}\mathcal{L}_{\rm int}} = 107 \pm 33\,(\rm stat) \pm 2$$

Theoretical predictions:

- LO (Superchic): 93 nb
- NLO (gamma-UPC): 95.4 ± 2 nb
- $\sigma_{fid}(\gamma\gamma \rightarrow \gamma\gamma)$ from data is well in agreement with NLO prediction

HardProbes 2024, Nagasaki Pranati Jana 23/09/2024

LbyL Process: Significance Estimation

- 2015 data also included in the significance calculation
- In 2015 data rapidity range was $\left|\eta\right|<$ 2.4 and re-scaled for the rapidity $\left|\eta\right|<$ 2.2
- Using acoplanarity shape, significance observed for 2018 + 2015 data is 5.8σ and expected is 4.4σ

		Num
	Data	LbI
		sig
2015	14	9.0
2018 (this analysis)	26	12.8
$2018 + 2015 (\eta^{\gamma} \text{ corrected})$	40	21.0

HardProbes 2024, Nagasaki | Pranati Jana 23/09/2024

LbyL Process: Unfolded Distribution

- Unfolded differential cross-sections compared with gamma-UPC@NLO, Superchic 3.03
- Default unfolding done using Superchic 3.03
- Within uncertainty agreement is good

HardProbes 2024, Nagasaki

Pranati Jana

23/09/2024

Limits on Axion-Like Particles

- the light-by-light continuum

range

HardProbes 2024, Nagasaki Pranati Jana 23/09/2024

• Measured diphoton invariant mass distribution used to search for narrow resonances (ALPs) on top of

• The limit on cross section σ ($\gamma\gamma \rightarrow a \rightarrow \gamma\gamma$) for ALPs with masses range 5-90 GeV set in the 5-200 nb

Limits on ALPs: Stringent Limit for 5-10 GeV Mass

- exclusion region in the $g_{a\gamma}$ vs. m_a plane
- Achieved the most stringent limit from 5-10 GeV

HardProbes 2024, Nagasaki Pranati Jana 23/09/2024

• This limit on cross section $\sigma(\gamma\gamma \rightarrow a \rightarrow \gamma\gamma)$ for ALPs with mass range 5-90 GeV used to determine

CMS-PAS-HIN-21-015

Summary

Breit-Wheeler process:

- 261 μ b, Starlight 3.13 = 251 μ b, gammaUPC/MG5 + FSR = 265 μ b
- 3.13 except in $p_{T^{ee}}$

• σ_{fid} ($\gamma\gamma \rightarrow e+e-$) = 271.5 ± 1.9 (stat) ± 18.3 (syst) µb well in agreement with Superchic 3.03 + FSR =

• Neutron emission probability (first time measurement) is consistent with Superchic 4.2, Starlight 3.13

• Unfolded distribution is consistent with Superchic 3.03 + FSR, gammaUPC/MG5 + FSR, Starlight

Summary

Summary

Breit-Wheeler process:

- σ_{fid} ($\gamma\gamma \rightarrow e + e$) = 271.5 ± 1.9 (stat) ± 18.3 (syst) µb well in agreement with Superchic 3.03 + FSR = 261 μ b, Starlight 3.13 = 251 μ b, gammaUPC/MG5 + FSR = 265 μ b
- Neutron emission probability is consistent with Superchic 4.2, Starlight 3.13
- Unfolded distribution is consistent with Superchic 3.03 + FSR, gammaUPC/MG5 + FSR, Starlight 3.13 except in p_{T}^{ee}

Light-by-light process:

- $\sigma_{fid}(\gamma\gamma \rightarrow \gamma\gamma) = 107 \pm 33$ (stat) ± 20 (syst) nb well in agreement with gammaUPC@NLO = 95.4 ± 2.0 nb Unfolded distribution is consistent with Superchic 3.03, gammaUPC@NLO

Searches for ALPs:

 Set limits on the production of ALPs coupling to photons for ALP masses 5-90 GeV and currently the best for 5-10 GeV

CMS-PAS-HIN-21-015

Summary

Visualization: Jeremi Niedziela (DESY)

Thank you all for your attention and time!

20

 \bigcirc

Extra

LbyL Process : Detector Level Distribution

 Good agreement in the detector level distributions between data, signal and background MCs

HardProbes 2024, Nagasaki

Pranati Jana

23/09/2024

Scale Factors and Uncertainties

 $C^{\gamma\gamma,ee} = \epsilon^{\gamma\gamma,ee} \times (SF^{\gamma,e,reco})^2 \times (SF^{\gamma,e,ID})^2 \times SF^{trig} \times SF^{ch.excl} \times SF^{neut.excl}$

Diphoton efficiency from simulation	$\epsilon^{\gamma\gamma}$	=
γ reco. and ID data-to-simulation scale factor	$\mathrm{SF}^{\gamma,\mathrm{reco+ID}}$	=
Dielectron efficiency from simulation	ϵ^{ee}	=
e^{\pm} reco. and ID data-to-simulation scale factor	SF ^{e, reco+ID}	=
Trigger selection data-to-simulation scale factor	$\mathrm{SF}^{\gamma\gamma,\mathrm{trig}}$	=
Charged exclusivity data-to-simulation scale factor	SF ^{ch.excl}	=
Neutral exclusivity data-to-simulation scale factor	SF ^{neut.excl}	=/
Diphoton global efficiency, Eq. (1)	$C^{\gamma\gamma}$	=
Dielectron global efficiency, Eq. (1)	Cee	Ì

Trigger SF	6.2%
MC-based e^+e^- efficiency	2%
Electron reconstruction and identification SF	(2 imes 0.5)%
Charged exclusivity SF	1%
Neutral exclusivity SF	1%
Luminosity	1.5%
Total	6.8%

HardProbes 2024, Nagasaki Pranati Jana 23/09/2024

- $(13.5 \pm 0.3)\%$
- 0.92 ± 0.06
- $(7.2 \pm 0.1)\%$
- 0.94 ± 0.01
- 0.88 ± 0.05
- 0.93 ± 0.01
- 0.85 ± 0.01
- $(8.0 \pm 1.1)\%$
- $(4.4 \pm 0.3)\%$

