Measurement of tau g - 2 in PbPb collisions

Arash Jofrehei^{*} for the CMS Collaboration

*University of Zurich

 $Pb^{(\star)}$

<u>CMS-PAS-HIN-24-011</u>

Ph

Pb

Hard Probes 2024 22-27th Sep. 2024, Nagasaki, Japan

UPC PbPb @ LHC

CMS The service of t

- Ultraperipheral Collisions (UPC) of PbPb at $\sqrt{s_{NN}} = 5.02$ TeV
 - High impact parameter, low forward activity
- Photon-photon processes in UPC \rightarrow Cross section scales with Z^4
- Anomalous magnetic moment of tau: $a_{\tau} = \frac{(g-2)_{\tau}}{2}$
- Cross section & tau kinematics sensitive to $a_{ au}$

$\gamma\gamma \rightarrow \tau\tau$ to measure a_{τ}

- <u>DELPHI</u> had the best measurement of a_{τ} since 2003.
- First LHC observations by CMS (2015 data) and ATLAS (2018 data) in PbPb
- CMS measurement in pp improved the previous best a_{τ} measurement by ATLAS & DELPHI by exploiting the high a_{τ} sensitivity in high $\tau\tau$ mass.

$\gamma\gamma \rightarrow \tau\tau$ to measure a_{τ}

- An improved PbPb measurement from CMS will be presented today.
 - Low $\tau\tau$ invariant mass: complementary to the pp analysis
 - 2018 dataset is ~4 times larger than 2015
 - 4 decay channels of μ +1prong, μ +3prong, μ +e, and e+3prong

1**20**

100

80

60

40

CMS Integrated Luminosity Delivered, PbPb+pPb Data included from 2015-11-25 09:59 to 2018-12-02 16:10 UTC

2015. PbPb 5.02 TeV/nucleon, 25.7 pb

2016, pPb 8.16 TeV/nucleon, 39.2 pb⁻¹

2018, PbPb 5.02 TeV/nucleon, 81.9 pb⁻¹

__ ¹²⁰ ⊧

^[qd] 100

80

40

20

Proton Equivalent Luminosity

minosity

2 60

Analysis strategy

- 4 decay channels of μ +1prong, μ +3prong, μ +e, and e+3prong
- Exclusivity requirements to select exclusive UPC events
- Signal selection
- Modeling the remaining exclusive and non-exclusive background
- Ensure that excess of data over background is kinematically compatible with signal
- Measurement of cross section and $a_{ au}$

Ensuring exclusivity

- In all decay channels, leading Hadronic Forward (HF) tower < 6 GeV
- In μ +e, additional exclusivity cuts applied on calorimeter activities as below.
- In μ +1prong, no neutrons in the Zero Degree Calorimeters (ZDC) (0n0n)
 - MC samples normalized by 0n0n probability as a function of dilepton mass, extracted from $\gamma\gamma \rightarrow \mu\mu$

Event selection

$\mu + 1 \text{ prong}$	\mathcal{H}	$\mu + e$	e+3prong
$ \begin{array}{c c} $	$\frac{\nu_{\tau}}{\nu_{\tau}} + \frac{\mu_{\tau}}{\pi_{+}} + \frac{\mu_{\tau}}{\mu_{+}} + \frac{\nu_{\tau}}{\mu_{-}} + \frac{\mu_{\tau}}{\mu_{-}} + \frac{\mu_{\tau}}{\mu$	(2.4) GeV	$\begin{array}{c c} & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$
π^{\pm} $p_T > 0.3 \text{ GeV}$	$\begin{array}{c} \pi^{\pm}\pi^{\mp}\pi^{\pm}\\ p_{T} > 0.5 \; \mathrm{GeV} \; (\mathrm{leading})\\ p_{T} > 0.3 \; \mathrm{GeV} \; (2 \; \mathrm{subleadings})\\ \mathrm{M}(\pi^{\pm}\pi^{\mp}\pi^{\pm}) < 1.5 \; \mathrm{GeV} \end{array}$	electron $p_T > 2.5 \; {\rm GeV}$	$\begin{aligned} \pi^{\pm}\pi^{\mp}\pi^{\pm} \\ p_T &> 0.5 \text{ GeV (leading)} \\ p_T &> 0.3 \text{ GeV (2 subleadings)} \\ \mathrm{M}(\pi^{\pm}\pi^{\mp}\pi^{\pm}) &< 1.5 \text{ GeV} \\ p_T(\pi^{\pm}\pi^{\mp}\pi^{\pm}) &> 1 \text{ GeV} \end{aligned}$
$\begin{aligned} \tau\tau \\ \alpha(\tau\tau) < 0.1 \\ p_T(\tau\tau) > 1 \text{ GeV} \end{aligned}$	$\begin{aligned} \tau\tau \\ \alpha(\tau\tau) < 0.1 \end{aligned}$	$\tau\tau$ $\alpha(\tau\tau) > 0.01$	$\begin{aligned} \tau\tau \\ \alpha(\tau\tau) < 0.1 \qquad 7 \end{aligned}$

Background modeling

- Non-exclusive background in semi-leptonic channels is estimated with a data-driven ABCD method
 - 4 regions of phase space with high/low number of charged pions and HF activity
 - Background in signal region (D) estimated bin-by-bin with $B \times C/A$
- Exclusive $\gamma\gamma \rightarrow ee, \gamma\gamma \rightarrow \mu\mu$, $\&\gamma\gamma \rightarrow \mu\mu\gamma$ considered
 - Acoplanarity and di-track p_T cuts to remove or reduce these backgrounds
 - FSR photon reconstruction to further reduce $\gamma\gamma \rightarrow \mu\mu\gamma$ in μ +1prong

Kinematics consistent with signal

CMS The second s

- Signal: $\gamma \gamma \rightarrow \tau \tau$ generated with UPCgen
- Signal stacked on top of background(s), compared to data
- Good agreement between data and the signal+background model

Measuring a_{τ} and fiducial cross section

- $\gamma\gamma \rightarrow \tau\tau$ samples with $-0.1 < a_{\tau} < 0.1$ generated with UPCgen
 - Fiducial phase space: tau $p_T > 1$, tau $|\eta| < 3$
- Fit performed on lepton p_T with the most sensitivity to a_{τ} .
- Distributions of lepton p_T are smoothened and morphed as a function of a_{τ} .
- 2D and 1D limits on $a_{ au}$ and fiducial cross section are extracted.

CMS-PAS-HIN-24-011

Systematics

- Main sources of systematic uncertainty on signal yield at $a_{\tau} = 0$:
 - Muon efficiency (trigger, identification) $\rightarrow 2.7\%$
 - Pion tracking efficiency $\rightarrow 2.0\%$
 - Luminosity $\rightarrow 1.5\%$
 - Choice of specific ABCD regions $\rightarrow 1.4\%$
 - Limited MC size, tau BR, electron efficiency, exclusivity cuts, ZDC categorization ...
 - Total $\approx 5\%$

Comparison with previous measurements

- ~6x better limits than the previous CMS PbPb
- Similar data size to ATLAS, but larger phase space
- Among best limits in the low $\tau\tau$ mass region

CMS-PAS-HIN-24-011

aτ

- Precision measurement of $a_{ au}$ at CMS in three complementary phase spaces
- $a_{\tau} = -35^{+11(stat)+18(stat+sys)}_{-3(stat)-10(stat+sys)} \times 10^{-3}$
 - SM calculation: $a_{\tau} = 0.001 \ 177 \ 21(5)$
- The most precise measurement of $\gamma\gamma \rightarrow \tau\tau$ cross section.

• $\sigma_{fiducual}(ub) = 447^{+18(stat)+16(stat+sys)}_{-5(stat)-11(stat+sys)}$

CMS-PAS-HIN-24-011

[1.61, 1.70] nb⁻¹ - PbPb ($\sqrt{s_{NN}} = 5.02$ TeV)

- Precision measurement of $a_{ au}$ at CMS in three complementary phase spaces
- $a_{\tau} = -35^{+11(stat)+18(stat+sys)}_{-3(stat)-10(stat+sys)} \times 10^{-3}$
 - SM calculation: $a_{\tau} = 0.001 \ 177 \ 21(5)$
- The most precise measurement of $\gamma\gamma \rightarrow \tau\tau$ cross section.

• $\sigma_{fiducual}(ub) = 447^{+18(stat)+16(stat+sys)}_{-5(stat)-11(stat+sys)}$

CMS-PAS-HIN-24-011

CMS Preliminary

- Precision measurement of $a_{ au}$ at CMS in three complementary phase spaces
- $a_{\tau} = -35^{+11(stat)+18(stat+sys)}_{-3(stat)-10(stat+sys)} \times 10^{-3}$
 - SM calculation: $a_{\tau} = 0.001 \ 177 \ 21(5)$
- The most precise measurement of $\gamma\gamma \rightarrow \tau\tau$ cross section.

• $\sigma_{fiducual}(ub) = 447^{+18(stat)+16(stat+sys)}_{-5(stat)-11(stat+sys)}$

CMS-PAS-HIN-24-011 CMS *Preliminary* [1.61, 1.70] nb⁻¹ - PbPb ($\sqrt{s_{NN}} = 5.02$ TeV)

- Precision measurement of $a_{ au}$ at CMS in three complementary phase spaces
- $a_{\tau} = -35^{+11(stat)+18(stat+sys)}_{-3(stat)-10(stat+sys)} \times 10^{-3}$
 - SM calculation: $a_{\tau} = 0.001 \ 177 \ 21(5)$
- The most precise measurement of $\gamma\gamma \rightarrow \tau\tau$ cross section.

• $\sigma_{fiducual}(ub) = 447^{+18(stat)+16(stat+sys)}_{-5(stat)-11(stat+sys)}$

CMS-PAS-HIN-24-011

Backup

Neutron multiplicity with ZDC

18

