

Effects on dilepton radiation induced by a background magnetic field

Han Gao

September 24. Nagasaki, Japan

Collaborators: Xiang-yu Wu*, Charles Gale*, Sangyong Jeon*

*McGill Universiity

Magnetic field in HIC

- Initial $eB \sim (1 10)m_{\pi}^2$. Decaying.
- Perturbative *B* treatment relevant in HIC [Guojun Huang, et al, PRD, 2023].
- Explore the EM field effect in hydro stage.

Dilepton radiation in HIC

- Hadrons: produced at the freeze-out.
- Dileptons (and real) photons): produced throughout the fireball evolution.
- This talk: hydro stage.

Pre-eq dileptons: Xiang-yu Wu's talk after mine

Dilepton radiation: thermometer and magnometer

- Dilepton production rate (DPR): $\frac{dR}{d^4k} = \frac{\alpha_{em}}{12\pi^4} \frac{n_B(\omega)}{k^2} B(\frac{m_\ell^2}{k^2}) \text{Im}\Pi^{\mu}_{\mu}(k;T,\mu)$
- Medium property => Photon self-energy => Dilepton observables.
- Useful and practical thermometer in hydro phase: effective temperature (> freeze-out T)
- Expected to be sensitive to external EM field => use dileptons as QGP magnometer? => Direct info on QGP effective magnetic field prior to freeze-out.

O(B) correction

- Π^{μ}_{μ} : scalar => At first sight, lowest correction to dilepton production from small magnetic field is at least $O(B^2)$.
- However a finite fluid velocity \vec{u} induces corrections at O(B) order: an in-fluid of-equilibrium.

Solve Boltzmann eq. $\delta f_a = \frac{eQ_a \tau_R E^\mu p_\mu}{T u^\mu p_\mu}$

• Born rate for dilepton production: dR $\int d^3 \vec{p}_1 d^3 \vec{p}_2$ $\frac{dn}{d^4k} = \int \frac{a \, p_1 a \, p_2}{(2\pi)^6} f(E_1) f(E_2) v_{12} \sigma \delta(k)$

electric field $\vec{E} = -\vec{u} \times \vec{B}$ by Lorentz transformation => \vec{E} field drives plasma out-

$$\frac{1}{2}n_F(1 - n_F)$$
. [J.-A. Sun, L. Yan, 2302.07696]

$$x-p_1-p_2).$$

Other non-eq corrections

- Other non-equilibrium corrections to DPR are systematically considered in a similar manner: Boltzmann eq (+Chapman-Enskog approximation).
- Viscosity [Vujanovic, et al, PRC, 2014]: $\delta f_V = n_F (1 n_F) C_q \frac{p^{\alpha} p^{\beta}}{T^2} \frac{\pi_{\alpha\beta}}{\mathscr{E} + \mathscr{P}}.$
- Diffusion [Denicol, et al, PRC, 2018]: $\delta f_D = T n_F (1 n_F) \left(\frac{n_B}{\mathscr{E} + \mathscr{P}} \mp \frac{1}{3u \cdot p} \right) \frac{p \cdot \dot{j}_{diff}}{T \hat{\kappa}}.$
- $f = n_F + \delta f_{EM} + \delta f_V + \delta f_D$.

Finite $\sigma_{\rho l}$ rate

- conductivity $\sigma_{el} = \infty$.
- obtain self-energy by $\Pi^{\mu\nu}(k) = \frac{\delta J^{\mu}(k)}{\delta A_{\nu}(k)}$ including τ_R dependence; (3) relate τ_R w/ σ_{el} ; (4) now DPR ~ Im Π^{μ}_{u} has a σ_{el} dependence.

• Considering only the leading order of $\alpha_{EM} =>$ no relaxation => plasma has

• An effective way to include relaxation: (1) solve Boltzmann eq. w/ $-\frac{\delta f}{\tau_R}$; (2)

Dilepton rate to invariant mass spectrum

- DPR from a single cell w/ temp *T*, baryon chemical potential μ_B : $\frac{dR}{d^4k}(\omega, \vec{k}; T, \mu_B).$
- Sum over fluid evolution => Phase-space distribution of all produced dileptons: $\frac{dN}{d^4k} = \int d^4X \frac{dR}{d^4k}(\omega; \vec{k}; T(X), \mu_B(X)).$
- Invariant mass spectrum (for a rapidity window): $\frac{dN}{dM} = M \int_{-y_{min}}^{y_{max}} dy \int d\phi p_T dp_T \frac{dN}{d^4k}.$
- More details: J. Churchill, et al, PRL 2024 & PRC 2024.

$B(\tau)$ and $E(\tau)$ profile

- Decaying B induces (another piece of) E by Faraday law.
- As a function of proper time τ instead of t [Sun, Plumari and Greco, PLB] 2021]=> Easier to embed in hydro.

$$B_{y}(x, y, \tau) = -\rho(x, y) \frac{B_{0}}{1 + \tau/\tau_{B}}; \quad E_{x}(t, x, y, \eta_{s}) = \int_{0}^{\eta_{s}} d\chi \frac{\partial B(x, y, \tau = \frac{t}{\cosh \chi})}{\partial \tau} \frac{t}{\cosh \chi}$$

- $\rho(x, y)$: smearing function. Chosen to be Gaussian.
- An addition contribution to $p \cdot E$ in δf_{EM} .

Putting it all together...

- We study the dilepton production for BES energy AuAu@19.6 GeV.
- Multi-stage 3+1D finite- μ_R hydro simulation reproducing hadronic observables.
- Interested in the effective eB in hydro stage => $eB_h \equiv eB(\tau = \tau_{hvdro})$, B-field lifetime τ_R as free parameters. $\sigma_{el} = T$ fixed.
- dNObservables to look at: invariant mass spectrum $\frac{dM}{dM}$, dilepton elliptic flow $v_2^{\ell^+\ell^-}$

Invariant mass spectrum

- σ_{el} correction gives slightly larger yields at low M => qualitatively similar to NLO rate, but not complete [J. Churchill, et al, PRL 2024]
- No significant correction from EM field.
- Hadronic contribution to low *M* region not included.

 $\frac{\partial g}{\partial M}$ (GeV⁻¹) 10⁻⁴

 10^{-3}

 10^{-6}

0.0

Dilepton $v_2(M)$

- Dilepton v_n defined as $\langle \cos n\phi \rangle + i \langle \sin n\phi \rangle = v_n e^{i\Psi_n}$ \Rightarrow $v_n = \sqrt{\langle \cos n\phi \rangle^2 + \langle \sin n\phi \rangle^2}$
- σ_{el} causes no significant correction.
- Intermediate invariant mass region $v_2(M)$ very sensitive to eB (at hydro starting time).
- A common crossing point at $(M, v_2) \approx (0.4 \text{ GeV}, 0.0045).$

12

τ_B dependence

- "Feedback" effect: Faster decay $B \Rightarrow 0.003$ -Stronger induced $E \Rightarrow 0.002$ -

0.0

Summary

- Possibility of inferring B from measured dilepton observables.
- sensitive to the B lifetime.

• 1st order effect from *B* and $E \sim \frac{\partial B}{\partial t}$ on dilepton production studied with hydro @ BES energies. Valid for $eB \lesssim T^2$.

• Dilepton $v_2(M)$ at low & medium IMR very sensitive to B at hydro stage; not

• Perturbative *B* has only moderate effect on dilepton $\frac{dN}{dM}$.

In-fluid EM field

•
$$E_{\mu} = F_{\mu\nu} u^{\nu}$$
.

• $F_{\mu\nu}$: EM fields in lab frame. Contain $F_{13} = -F_{31} = B_v$ and $F_{01} = -F_{10} = E_x$

 E_{z}

• W.-T. Deng & X.-G. Huang PRC 2012. $E_z \ll E_x$.

10 مرز (ield) مرزم المرزم الم

10⁻⁵

p_T **spectrum**

• No significant difference observed in dN $\frac{dp_T}{dp_T}$ at medium Mwindow.

 $V_2(p$ \boldsymbol{T}

Only B vs B+E

