

Electroweak vector-boson production in hadronic collisions with ALICE at the LHC

Shingo Sakai for the ALICE collaboration

(Tsukuba University of Technology)

Motivation (1)

W/Z boson

■ Heavy mass

 \blacksquare $M_{\rm W} = 80.377 \pm 0.012 \, {\rm GeV/c^2}$

■ $M_z = 91.1876 \pm 0.0021 \text{ GeV}/c^2$

Particle Data Group, PTEP 2022 (2022) 083C01

Weakly interacting particles

Decay leptons insensitive to the strongly-interacting medium

 Produced predominantly via a quark – antiquark pair annihilation (Drell-Yan)

• $u\bar{d} \rightarrow W^+, d\bar{u} \rightarrow W^-, and q\bar{q} \rightarrow Z$

Sensitive to parton distribution functions for up and down quarks

CT14 NNLO

CT I 4nnlo : S. Dulat et al., PRD 93 (2016) 033006

Motivation (2)

pp collisions

- Good test for pQCD and electroweak theory
- Observed faster than linear production in high multiplicity pp events for charged-particle productions
- W/Z bosons may different behavior due to their feature
 - Offering a unique perspective in the events

EPJC (2017)77:163K. Eskola, P. Paakkinen, H. Paukkuuen, C. Salgado

p–Pb and Pb–Pb collisions

- Provide insights on nuclear modification of parton distribution function (nPDF)
 - Important to understand the initial-state nuclear effects

ALICE detector in Run 2

Probe different x regimes, from $x \sim 10^{-3} - 10^{-4}$ to $x \sim 10^{-1}$

Collision system	Energy	Luminosity	Year	Analyses	publication
РР	I 3 TeV	~ 6.6 pb ^{−1}	2016 + 2017 + 2018	Z,W (e, midrapidity)	
р–Рb Pb–р	5.02 TeV	5.03 ± 0.18 nb ⁻¹ 5.81 ± 0.20 nb ⁻¹	2013	Ζ,W (μ, forward /backward)	Z,W : JHEP 02 (2017) 077
р—Рb Pb—р	8.16 TeV	$6.73 \pm 0.16 \text{ nb}^{-1}$ 10.0 \pm 0.22 nb $^{-1}$	2016	Ζ,W (μ, forward /backward)	W : JHEP 05 (2022) 036 Z : JHEP 09 (2020) 076
Pb–Pb	5.02 TeV	663 ± 15 μb ⁻¹	2015 + 2018	Ζ,W (µ, forward)	W : JHEP 05 (2022) 036 Z : JHEP 09 (2020) 076

W yields extraction in ALICE

Z boson reconstruction in ALICE

Z bosons reconstruction at midrapidity : invariant mass of electron pairs

JHEP09 (2020) 076

- One of electron (positron) has $p_{T,e} > 30 \text{ GeV}/c \& |y_e| < 0.6$
- Z boson reconstruction at forward rapidity : invariant mass of muon pairs
 - Both muons have $p_{T,\mu} > 20 \text{ GeV}/c \& 2.5 < y_{\mu} < 4$

ALI-PREL-578448

CT I 4nnio : S. Dulat et al., PRD 93 (2016) 033006 **CT I 8nio** : M. Yan et al., PRD 107 (2023) 116001 **NNPDF4.0** : R. D. Ball et al., EPJ C82 (2022) 428

- Cross sections for $e^{\pm} \leftarrow W^{\pm}$ in |y| < 0.6
 - Electrons in $30 < p_T < 60 \text{ GeV/}c$
- Compared to models including pQCD NLO (POWHEG) with PDFs (CT14nnlo, CT18nlo, NNPDF4.0)
 - Consistent with data within uncertainties

Multiplicity dependence of W production

 $e^{\pm} \leftarrow W^{\pm} (trig)$ hadrons with $e^{\pm} \leftarrow W^{\pm}$ $(|\Delta \phi - \pi| < 0.7)$

A faster-than-linear trend for associated hadrons

→ Colour-reconnection interaction with partons from other hard scattering via strong force

J. R. Christiansen and P. Z. Skands, JHEP 08 (2015) 003

- \rightarrow Auto-correlation between jet-fragmentation products and hadron for multiplicity estimation
 - S. G. Weber, A. Dubla. A. Andronic, and A. Morsch EPJC (2019) 79:36

 \rightarrow W-boson production is not affected by color-reconnection and autocorrelation

- Fiducial cross section of Z bosons
 - One of electron (positron) has $p_T > 30 \text{ GeV}/c$ and |y| < 0.6
 - 60 < M_Z < 108 GeV/ c^2
- Compared to models including pQCD NLO (POWHEG) with PDFs (CT14nnlo, CT18nlo, NNPDF4.0)
- Consistent with data within uncertainties ■ These models reproduce $e^{\pm} \leftarrow W^{\pm}$

at midrapidity

ALI-PREL-578440

Calculations underestimate data for intervals closest to midrapidity, both at forward and backward

 3.5σ deviation from free-PDF calculation (MCFM + CTI4) for W⁺ at forward rapidity for the interval with the largest rapidity

MCFM :T. Campbell and T. Neumann, JHEP 12 (2019) 034 / FEWZ_: R. Gavin, Y. Li. F. Petriello and S. Quackenbush, CPC 182 (2011) 2388-2403 CT14 : S. Dular et. al., PRD 93 (2016) 033006 / CT14 + EPPS16_: K. J. Eskola et. al., EPJ C77 (2017) 163 nCTEQ15_: K. Kovarik et. al., PRD 93 (2016) 085037 / nCTEQ15WZ: A. Kusina et. al., EPJC 80 (2020) 968 /nNNPDF2.0_: JHEP 09 (2020) 183

 W^{\pm} in p–Pb at 8.16 TeV (2)

- Ratio to CT14 as a function of rapidity compared with CMS results (PLB 800 (2020) 135048)
 - ALICE reaches the largest |y| region (down to $x \sim 10^{-4}$ at forward region)
- ALICE results in agreement with the trend at the edges of the CMS acceptance
 - Suppression of W⁺ boson production at large rapidity

Z production in p-Pb

Within experimental and theoretical uncertainties, pQCD+isospin with/without nPDF are consistent with the measured cross section at $\sqrt{s_{NN}} = 5.02$ TeV and $\sqrt{s_{NN}} = 8.16$ TeV in p–Pb collisions

W^\pm in Pb–Pb at 5.02 TeV

- Ratio to CT14 as a function of rapidity compared with ATLAS results (EPJC 79 (2019) 935)
 - ALICE results well described by EPPS16 calculations (2σ lower than CT14 without EPPS16)
 - EPPS16 underestimates ATLAS data
- Ratio to CT14 is smaller than unity at large rapidity
 - Suggests a significant modification of the PDFs

Z in Pb-Pb at 5.02 TeV

- Model with free PDF (MCFM+CT14) shows a 3.4σ deviation w.r.t. the measured Z cross section
- Models with nPDF (CT14+EPPS16, EPPS09s, nCTEQ15) show a well-reproduced measured Z cross section
- Strong evidence of modification of Z production in Pb–Pb collisions

EPS09 : JHEP 04 (2009) 065 **EPS09s** : JHEP 07 (2012) 073

Summary

- Presented electroweak-boson production in ALICE from small to large collision systems with ALICE
 - pp collisions at $\sqrt{s_{\rm NN}}$ = 13 TeV
 - W/Z boson production is consistent with NLO pQCD (POWHEG) + PDF (CT14nnlo, CT18nlo and NNPDF4.0)
 - Linear dependence of W production on charged multiplicity
 - p-Pb collisions at $\sqrt{s_{NN}}$ =5.02 and $\sqrt{s_{NN}}$ = 8.16 TeV, and Pb-Pb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV
 - ALICE reaches the largest rapidity for W boson measurements
 - Suggests a significant modification of the nuclear PDFs
- Outlook at Run3
 - Detector upgrades : MFT, ITS and TPC
 - Significant increase in luminosity (up to 60 pb⁻¹ in pp and 1.6 nb⁻¹ in Pb-Pb)
 - Detailed study of nPDFs
 - Differential study for electroweak-boson production (ex. W/Z + jet)

Back up

W^{\pm} in Pb-Pb at 5.02 TeV (2)

Normalized yields as a function of centrality

- Scaled by average nuclear overlap function $\langle T_{AA} \rangle$ $\sigma_{NN}^{inel} = 67.6 \pm 0.6 \text{ mb}$
- Expected from a hard process
- Model calculation
 - CT14 PDFs with EPPS16
 - A good agreement with data
- Centrality-dependence through shadowed σ_{NN}^{inel} , obtained by forcing the agreement between EPPS16 and the W/Z ATLAS data (Eskola et al. (PRL 125(2020)212301))
 - $\sigma_{\rm NN}^{\rm inel} = 41.5^{+16.2}_{-12.0} \, \rm mb$
- $< T_{AA} >$ re-evaluated, yields worse agreement between ALICE data and EPPS16

PRL 127, 102002 (2021)

PLB 202 (2020) 135262

HARD PROBES 23-27 September 2024, Shingo Sakai for the ALICE collaboration

Modified cross section

Eskola et al. (PRL 125(2020)212301

FIG. 3. The centrality-dependent nuclear modification ratios for W^{\pm} and Z-boson production in Pb + Pb collisions from ATLAS [39,40] compared to NNLO pQCD calculation with EPPS16 nuclear modification with the nominal value of $\sigma_{nn}^{inel} = 70.0$ mb (left) and with the nuclear-suppressed value $\sigma_{nn}^{inel} = 41.5$ mb (right).

W^{\pm} in pp collisions at 13 TeV (1)

■ p_T differential cross sections of $e^{\pm} \leftarrow W^{\pm}$ in |y| < 0.6, and ratio for $e^+ \leftarrow W^+$ and $e^- \leftarrow W^-$ as a function of p_T ■ Compared to the predictions of pQCD NLO (POWHEG) + CTIONLO PDF

- Measurements and model are consistent within the uncertainties
- Larger cross section for $e^+ \leftarrow W^+$ due to isospin effects

CT I0nlo H. L. Lai et. al., PRD 82 (2010), 074024

- Production of hard probes in peripheral collisions
 - Significantly affected by event selection and geometry biases
 - These biases cause a "suppression" in peripheral collisions

Comparison with HG-PYTHIA

Including biases from event selection and geometry

HG-PYTHIA C. Loizides and A. Morsch, PLB 773 (2017) 408-411