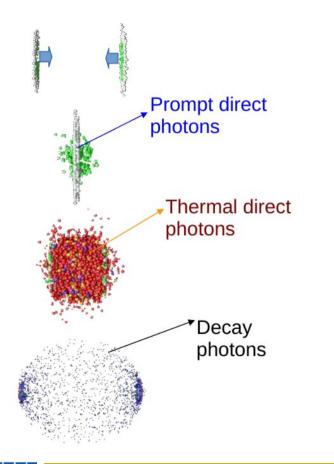
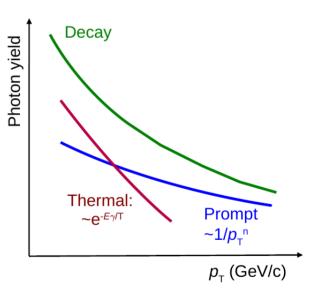
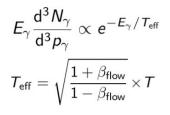
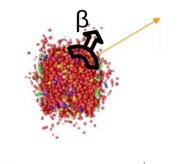


Direct photon production and correlations at low p_T in Pb-Pb collisions in ALICE


D.Peresunko for the ALICE Collaboration


Direct photons

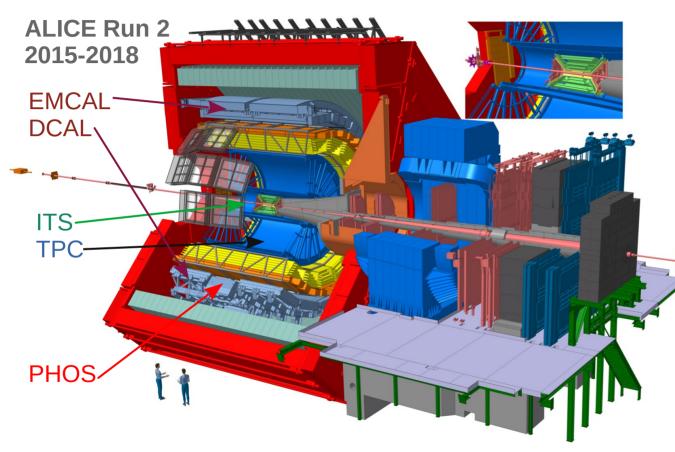

Direct photons – photons not originating from finalstate hadron decays but produced in electromagnetic interactions in course of collision


- Prompt direct photons: those resulting from the interaction of incoming nucleons
 - Control of initial state, number of binary collisions, structure functions modification etc.
- Thermal direct photons: thermal radiation of hot matter
 - Test temperature, collective flow development, space-time dimensions of hot fireball
- Decay photons: photons from decays of final-state hadrons

Real vs virtual direct photons

 $rac{dN}{dM_{ee}} \propto (M_{ee}T)^{3/2} e^{-M_{ee}/T}$

Real photons:


- Integrate contributions from pre-equilibrium phase till hadronic gas freeze-out
- Thermal contribution significant at p_{τ} <3 GeV/c
- Slope strongly affected by collective flow

Virtual photons:

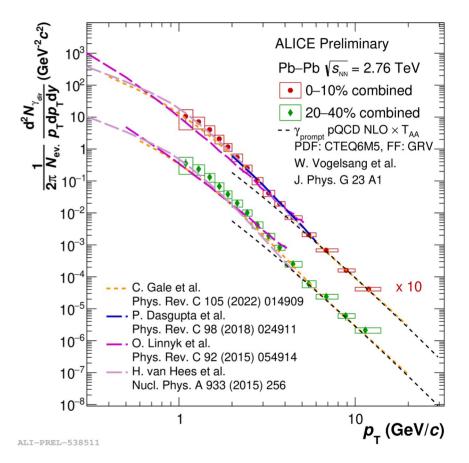
- Low-mass dielectron pairs: relate to real photon yield with Kroll-Wada formula
- Intermediate mass region: test true temperature without blueshift
 - May contain pre-equlibrium contribution

Possibilities to measure direct photons in ALICE

Statistical subtraction:

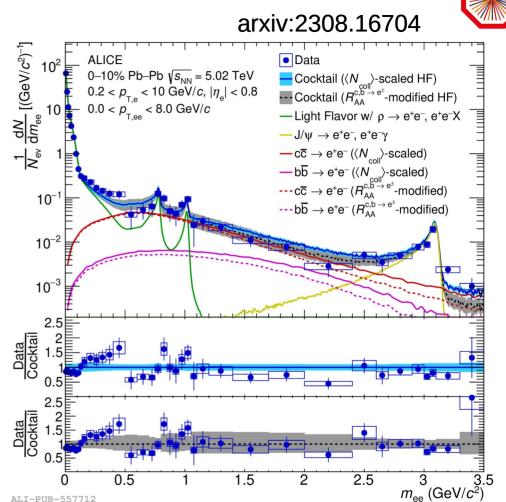
- Measure inclusive photon spectrum in large acceptance calorimeters EMCAL, DCAL or precise calorimeter PHOS or via Photon Conversion Method (PCM)
- Measure neutral meson spectra (π⁰, η, ω, ...)
- Subtract estimated decay photon yield from the inclusive one

Virtual photons:


- Measure dilepton invariant mass spectra
- Subtract combinatorial background
- Decompose into meson and direct photon contributions

Direct photon yield in Pb-Pb at $\sqrt{s_{NN}}$ =2.76 TeV

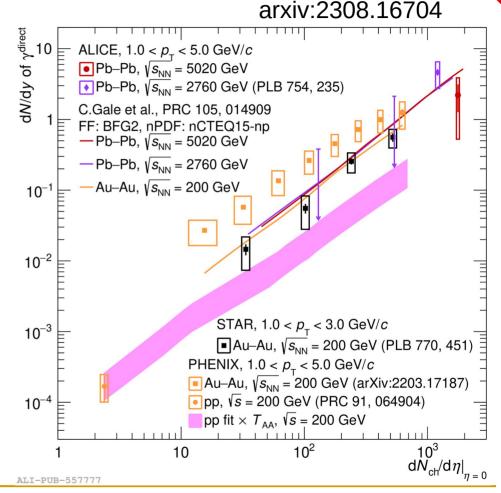
- Improved results from the previous publication (PLB 754 (2016) 235-248)
 - Larger statistics : 20M events in 0-10%
 - Data-driven material budget correction (JINST 18 (2023) 11, P11032)
- Agree with NLO calculations scaled with T_{AA} at high $p_T>4$ GeV/c
- Excess of direct photon production beyond pQCD
- In general measured yield is higher than predictions (thermal + pre-eq. photons) though agree within uncertainties



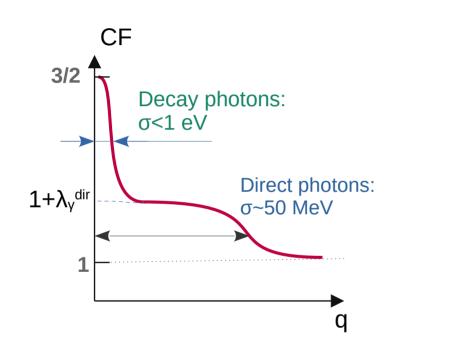
Measurement via dileptons

- Hint for an excess at low m_{ee}
 - Consistent with additional thermal radiation from the medium
- Need to control heavy-flavour background
 - DCA_{ee} studies in Pb-Pb
- No significant excess at intermediate mass range 1.1<m_{ee}<2.5 GeV/c²
- Extract fraction of direct photons by fitting the m_{ee} spectra (m_{ee} < 0.4 GeV/c²)

Direct photons in pp collisions at \sqrt{s} =13 TeV arxiv:2308.16704 arxiv:2308.16704 10 ⊨ <u>dy</u> [(GeV/c)⁻²] $\frac{1}{N_{\rm ev}} \frac{dN}{dm_{\rm ee}} \left[({\rm GeV}/c^2)^{-1} \right]$ 10^{2} ALICE ALICE 0–10% Pb–Pb $\sqrt{s_{\rm NN}}$ = 5.02 TeV 0–10% Pb–Pb $\sqrt{s_{_{\rm NN}}}$ = 5.02 TeV Data $0.2 < p_{\rm T.e} < 10 \; {\rm GeV}/c, \; |\eta_{\rm p}| < 0.8$ $1.0 < p_{T.ee}^{(1)} < 2.0 \text{ GeV}/c$ $\frac{d^2 N_{\gamma^{direc}}}{\sqrt{dp_T}}$ Data $-r \times f_{\text{dir}} + (1-r) \times f_{1} = + f_{\text{HE}}$ d $-f_{1F}$ $r = 0.025 \pm 0.013$ (stat.) χ^2 /NDF = 10.67/4 C.Gale et al., PRC 105, 014909 10 - Total v^{direct} --- Prompt (FF: BFG2, nPDF: nCTEQ15-np) Pre-equilibrium Thermal (QGP + Hadronic gas) 10-10-1.4 1.2 <u>Data</u> heory 0.8 10^{-2} 0.6 0.4 0.15 0.35 0.05 0.1 0.2 0.25 0.3 0.4 2 5 6 p_ (GeV/c) $m_{\rm ee}$ (GeV/ c^2) ALI-PUB-557762 ALI-PUB-557772


- Direct photon spectrum measured at low p_{T}
- Data can be reproduced by the model with thermal contribution

Dmitri Peresunko


Direct photons in Pb-Pb

- Improved results in Pb-Pb collisions at √s_{NN}= 2.76 and 5.02 TeV
- Agree with both STAR and PHENIX

Direct photon Bose–Einstein correlations

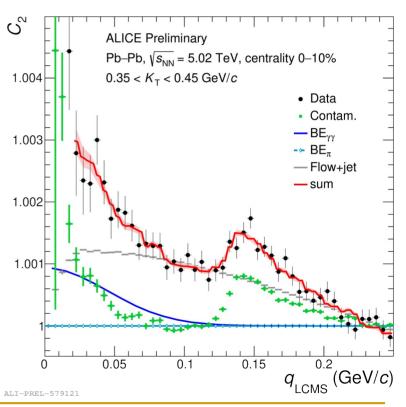
Dmitri Peresunko

- No need to select direct photons:
 - Decay-decay, decay-direct correlations have tiny width (~1 eV) and not visible
 - Correlation stength reflects proportion of direct photons

$$\lambda_{\gamma}^{dir} \approx \frac{1}{2} \left(\frac{N_{\gamma}^{dir}}{N_{\gamma}^{incl}} \right)^2 \sim 10^{-3}$$

Variables: $K_T = \frac{1}{2}(\vec{p}_1 + \vec{p}_2)_T$ $q_{LCMS} = |\vec{p}_1 - \vec{p}_2|$ in Longitudinally Co-Moving System

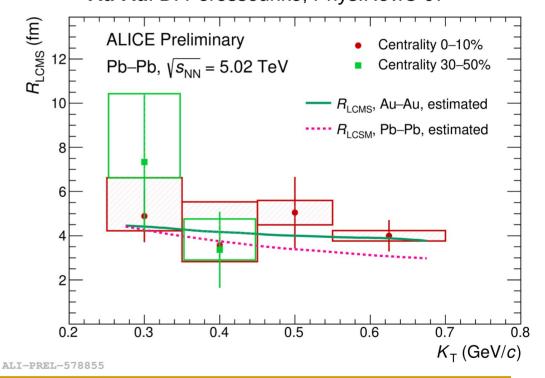
Direct photon correlation function


$$A(1 + \lambda \exp(-q^2 R^2) + a_{contam}Cont + a_{BE \pi \pi}(C_2^{BE \pi \pi} - 1) + a_{Flow}(C_2^{Flow} - 1))$$

- Template fit
 - Contamination: photon conversion, hadron bremsstrahlung, residual correlations in resonance decays
 - Direct photon BE correlations
 - □ Residual correlation in decays of BE correlated π^0 (negligible in this K_T bin)
 - Long-range (flow and jet) correlations

$$K_{T} = \frac{1}{2} (\vec{p}_{1} + \vec{p}_{2})_{T} \quad q_{LCMS} = |\vec{p}_{1} - \vec{p}_{2}|$$

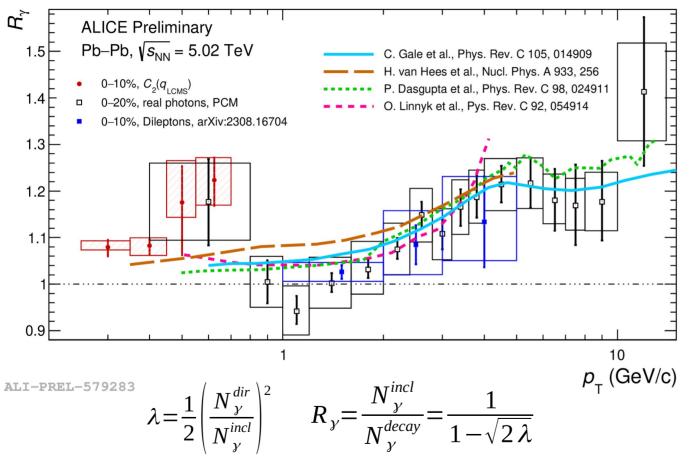
Dmitri Peresunko



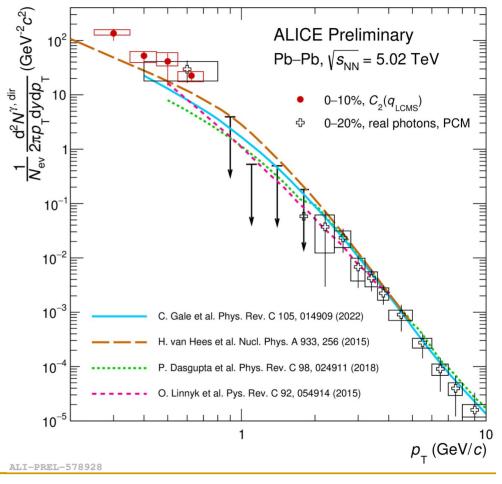
Correlation radius

- Correlation radius R_{LCMS} is an average of all 3 source radii
- Correlation radius shows minor K_T dependence
 - No significant radial flow or interplay of early and later contributions?
- Agrees with estimated radii from hydro predictions
 - Theoretical curves were stimated by averagind of published R_{out}, R_{side}, R_{long} radi

Hydrodynamic calculations:

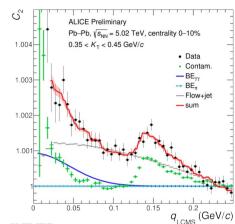

Pb-Pb: O. Garcia-Montero et al., Phys.Rev.C 102 (2020) 2, 024915 **Au-Au**: D. Peressounko, Phys.Rev.C 67

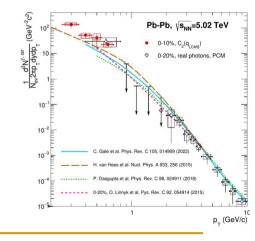
Direct photon excess


- BE correlations provide possibility to measure direct photon yield with unprecedented accuracy
- In the overlap region measurements are consistent with measured with PCM subtraction method
- At low p_T measured direct photon yield is larger than predictions by factor ~2

Direct photon spectrum

- Extended measurements down to 250 MeV
- Methods provide consistent results in the overlap region
- Measured spectrum exceeds predictions at low p_T by factor ~2





Conclusions

- ALICE provides measurement of direct photon spectra with several independent approaches
- Direct photon spectra were measured in Pb-Pb collisions with two available energies
- Consistent scaling with N_{ch} at high p_T was observed for all collisions
- Direct photon Bose-Einstein correlations were measured
 - Correlation radius is consistent with hydrodynamic model predictions
 - Direct photon yield was estimated with correlation analysis, consistent with other measurements

Talks and Posters to have a look

- Jerome Jung, «Direct photon measurement in small systems and thermal radiation from QGP with ALICE»,
 - talk in session 16, 12:10
- Gustavo Conesa Balbastre, «Measuring isolated prompt photon production in small and large collision systems with ALICE»

talk in session 28, 9:00

Emma Charlotte Ege, «Performance of the dielectron analysis in Pb-Pb collisions in Run 3 with ALICE»

poster #74

Florian Eisenhut, «Dielectron production and topological separation of dielectron sources with ALICE in Run 3»

poster #44

Backup slides

