

Direct-photon measurement in small systems and thermal radiation from QGP with ALICE

12th Hard Probes | Nagasaki, Japan 22–27 September 2024

Jerome Jung

for the ALICE collaboration

Dielectron production in Pb−**Pb collisions**

Composition of the dielectron spectrum:

Initial stage of the collision

- **Drell-Yan** & hard scatterings
- **•** Pre-equilibrium contributions

Dielectron production in Pb−**Pb collisions**

Composition of the dielectron spectrum:

Initial stage of the collision

- **Drell-Yan** & hard scatterings
- **Pre-equilibrium contributions**

Thermal radiation from the medium

▪ Quark-Gluon Plasma (**QGP**)

Dielectron production in Pb−**Pb collisions**

Composition of the dielectron spectrum:

Initial stage of the collision

- **Drell-Yan** & hard scatterings
- **Pre-equilibrium contributions**

Thermal radiation from the medium

- Quark-Gluon Plasma (**QGP**)
- Hot **hadronic phase**
- \rightarrow Separation via invariant mass (m_{ee})

 \rightarrow Direct temperature extraction from exp. fit to the IMR

Dielectron production in Pb−**Pb collisions**

Composition of the dielectron spectrum:

Initial stage of the collision

- **Drell-Yan & hard scatterings**
- **Pre-equilibrium contributions**

Thermal radiation from the medium

- Quark-Gluon Plasma (**QGP**)
- Hot **hadronic phase**
- \rightarrow Separation via invariant mass (m_{ee})

 \rightarrow Direct temperature extraction from exp. fit to the IMR

However: Large combinatorial & physical backgrounds

Hadronic decays

- **•** Pseudoscalar and vector mesons $(\pi^0, \eta, \eta', \rho, \omega, \varphi, J/\psi)$
- Correlated semi-leptonic decays of heavy-flavor (HF)

Dielectron production in Pb−**Pb collisions**

Composition of the dielectron spectrum:

Initial stage of the collision

- **Drell-Yan** & hard scatterings
- **Pre-equilibrium contributions**

Thermal radiation from the medium

- Quark-Gluon Plasma (**QGP**)
- Hot **hadronic phase**

Hadronic decays

- **•** Pseudoscalar and vector mesons $(\pi^0, \eta, \eta', \rho, \omega, \varphi, J/\psi)$
- Correlated semileptonic decays of heavy-flavor (HF)

Measurements in pp:

- Vacuum baseline for Pb−Pb studies (HF, Drell-Yan, direct photons)
- Search for new phenomena in high-multiplicity (HM) events or at low momenta ALICE, Phys. Rev. Lett. 127, 042302 (2021)

 m_{ee} (GeV/ c^2)

Dielectron production in pp at \sqrt{s} =13 TeV **Minimum bias (MB)**

- Analysis of the full Run 2 data set
- Increase of statistics compared to previous publication: ALICE, Phys. Lett. B 788 (2019) 505 MB: a factor of 3.8 & HM: a factor of 4.4
- Updated hadronic cocktail estimation with independent measurements at $\sqrt{s} = 13$ TeV $\rightarrow \pi^0$ and η mesons in the same multiplicity intervals

Dielectron production in pp at \sqrt{s} =13 TeV **Minimum bias (MB)**

- Analysis of the full Run 2 data set
- Increase of statistics compared to previous publication: ALICE, Phys. Lett. B 788 (2019) 505 MB: a factor of 3.8 & HM: a factor of 4.4
- Updated hadronic cocktail estimation with independent measurements at $\sqrt{s} = 13$ TeV $\rightarrow \pi^0$ and η mesons in the same multiplicity intervals

→ **Poster by M. Wälde:** ω production in pp at \sqrt{s} = 5.02 TeV https://indi.to/zH5RG

Dielectron production in pp at \sqrt{s} =13 TeV **Minimum bias (MB)**

- Analysis of the full Run 2 data set
- Increase of statistics compared to previous publication: ALICE, Phys. Lett. B 788 (2019) 505 MB: a factor of 3.8 & HM: a factor of 4.4
- Updated hadronic cocktail estimation with independent measurements at $\sqrt{s} = 13$ TeV $\rightarrow \pi^0$ and η mesons in the same multiplicity intervals

 \rightarrow MB ($p_{\text{Tree}} > 1$ GeV/c) well described by hadronic sources

Dielectron production in pp at \sqrt{s} **=13 TeV High multiplicity (HM)**

- ALICE
- Analysis of the full Run 2 data set
- Increase of statistics compared to previous publication: ALICE, Phys. Lett. B 788 (2019) 505 MB: a factor of 3.8 & HM: a factor of 4.4
- Updated hadronic cocktail estimation with independent measurements at $\sqrt{s} = 13$ TeV $\rightarrow \pi^0$ and η mesons in the same multiplicity intervals
	- \rightarrow Larger cocktail uncertainties due to multiplicity dependence of HF production

 \rightarrow Within uncertainties no sign of thermal radiation in HM pp events

Direct-photon fraction in pp at $\sqrt{s} = 13$ TeV

Direct photons in pp

- \rightarrow Photons not originating from hadronic decays
- \rightarrow Search for possible thermal contributions in HM pp events

Direct-photon fraction r :

 $r = \gamma_{\text{dir}}^* / \gamma_{\text{incl}}^* = \gamma_{\text{dir}} / \gamma_{\text{incl}}$ $m_{\text{ee}} \rightarrow 0$ Link to real-photon yield

Kroll-Wada formula f_{dir} used for extraction:

 $f_{\text{fit}} = r \times f_{\text{dir}} + (1 - r) \times f_{\text{LF}} + f_{\text{HF}}$

- Direct-photon fraction r : only free parameter
- Spectrum fitted above pion mass
	- \rightarrow Large reduction of systematic uncertainties compared to real-photon measurement

• Access the real direct-photon yield: $\gamma^{\text{dir}} = r \cdot \gamma^{\text{incl}}$

Direct-photon yield in pp at \sqrt{s} = 13 TeV **Search for thermal radiation in small systems**

First measurement of direct photons in small systems at low p_T at the LHC \rightarrow Direct-photon fraction $r = 0.01 - 0.03$

MB: Data can be reproduced by both prompt only or prompt + thermal radiation

Direct-photon yield in pp at \sqrt{s} = 13 TeV

Search for thermal radiation in small systems

First measurement of direct photons in small systems at low p_T at the LHC \rightarrow Direct-photon fraction $r = 0.01 - 0.03$

MB: Data can be reproduced by both prompt only or prompt + thermal radiation

HM: Significant increase of direct-photon yield compared to MB collisions

Challenging to calculate photon production in HM pp collisions

Direct-photon signal

p_T -integrated direct photon yields

Power-law dependence of direct-photon yield on charged-particle multiplicity proposed by PHENIX \rightarrow Suggests scaling independent of energy or centrality

Real-photons in 0-20% Pb–Pb at $\sqrt{s_{NN}}$ = 2.76 TeV

ALICE, Phys. Lett. B 754 (2016) 235-248

Virtual-photons in 0-10% Pb–Pb at $\sqrt{s_{NN}} = 5.02$ TeV [ALICE, arXiv:2308.16704](https://arxiv.org/abs/2308.16704)

 \rightarrow Both measurements consistent with model predictions

Direct-photon signal

p_T -integrated direct photon yields

Power-law dependence of direct-photon yield on charged-particle multiplicity proposed by PHENIX \rightarrow Suggests scaling independent of energy or centrality

Real-photons in 0-20% Pb–Pb at $\sqrt{s_{NN}}$ = 2.76 TeV

ALICE, Phys. Lett. B 754 (2016) 235-248

Virtual-photons in 0-10% Pb–Pb at $\sqrt{s_{NN}} = 5.02$ TeV [ALICE, arXiv:2308.16704](https://arxiv.org/abs/2308.16704)

 \rightarrow Both measurements consistent with model predictions

Virtual-photons in pp at \sqrt{s} = 13 TeV \rightarrow Crucial inputs to constrain theoretical developments

Results at LHC energies not sensitive enough yet to confirm:

- Universal scaling behavior
- Onset of thermal radiation

Invariant-mass spectrum

Comparison to hadronic cocktail, including:

 N_{coll} -scaled HF measured in pp at $\sqrt{s} = 5.02$ TeV \rightarrow Vacuum baseline

ALICE

- \rightarrow Good description of π^0 -Dalitz and J/ ψ decays
- \rightarrow Indication of HF suppression compared to pp
	- \rightarrow Expected due to cold-nuclear matter (CNM) and hot-nuclear matter (HNM) effects

Invariant-mass spectrum

Comparison to hadronic cocktail, including:

- N_{coll} -scaled HF measured in pp at $\sqrt{s} = 5.02$ TeV \rightarrow Vacuum baseline
- Include measured $R_{\rm AA}$ of $c/b\to e^\pm$ \rightarrow Modified-HF cocktail
- \rightarrow Overall improved description of the data including the HF suppression
- \rightarrow A hint for an excess at low m_{ee} (1.3 σ)

ALICE

Invariant-mass spectrum

Comparison to hadronic cocktail, including:

- N_{coll} -scaled HF measured in pp at $\sqrt{s} = 5.02$ TeV \rightarrow Vacuum baseline
- Include measured R_{AA} of $c/b \rightarrow e^{\pm}$ \rightarrow Modified-HF cocktail
- Comparison to theoretical models: R. Rapp & PHSD Rapp, Adv. HEP. 2013 (2013) 148253 PHSD, PRC 97 (2018) 064907
- \rightarrow Excess in LMR: Expected from ρ mesons produced thermally in the medium
	- \rightarrow Short lifetime and strong coupling to $\pi^+\pi^-$ channel
	- \rightarrow Regeneration in the hot hadronic phase &

Invariant-mass spectrum

Comparison to hadronic cocktail, including:

- N_{coll} -scaled HF measured in pp at $\sqrt{s} = 5.02$ TeV \rightarrow Vacuum baseline
- Include measured R_{AA} of $c/b \rightarrow e^{\pm}$ \rightarrow Modified-HF cocktail
- Comparison to theoretical models: R. Rapp & PHSD Rapp, Adv. HEP. 2013 (2013) 148253 PHSD, PRC 97 (2018) 064907
- \rightarrow Excess in LMR: Expected from ρ mesons produced thermally in the medium
	- \rightarrow Short lifetime and strong coupling to $\pi^+\pi^-$ channel
	- \rightarrow Regeneration in the hot hadronic phase &

Excess spectrum

[ALICE, arXiv:2308.16704](https://arxiv.org/abs/2308.16704)

Subtraction of known hadronic sources without ρ

Compared with sum of 2 contributions:

- In-medium ρ produced thermally in hot hadronic matter
- Thermal radiation from QGP

Implemented in 2 different ways:

- R. Rapp's expanding fireball model

Excess spectrum

[ALICE, arXiv:2308.16704](https://arxiv.org/abs/2308.16704)

Subtraction of known hadronic sources without ρ

Compared with sum of 2 contributions:

- In-medium ρ produced thermally in hot hadronic matter
- Thermal radiation from QGP

Implemented in 2 different ways:

- R. Rapp's expanding fireball model
- Parton-Hadron-String Dynamics (PHSD): transport model

Both models compatible with data:

- \rightarrow Less yield predicted by PHSD
- \rightarrow Some tension in 0.5 $< m_{ee} < 0.7$ GeV/ c^2 by 2.7 σ (4.0 σ)
	- \rightarrow More data needed to confirm

Invariant-mass spectrum

Comparison to hadronic cocktail, including:

- N_{coll} -scaled HF measured in pp at $\sqrt{s} = 5.02$ TeV \rightarrow Vacuum baseline
- Include measured R_{AA} of $c/b \rightarrow e^{\pm}$ \rightarrow Modified-HF cocktail

Focus on IMR:

- \rightarrow Dominated by HF contributions
- \rightarrow Most sensitive for radiation of the QGP

Invariant-mass spectrum

Comparison to hadronic cocktail, including:

- N_{coll} -scaled HF measured in pp at $\sqrt{s} = 5.02$ TeV \rightarrow Vacuum baseline
- Include measured R_{AA} of $c/b \rightarrow e^{\pm}$ → Modified-HF cocktail

Focus on IMR:

- \rightarrow Dominated by HF contributions
- \rightarrow Most sensitive for radiation of the QGP

Topological separation Approach

Distance-of-closest approach (DCA):

 \rightarrow DCA_{ee}(thermal) < DCA_{ee}(HF)

Separation of prompt and non-prompt sources based on their decay topology:

- \rightarrow Decay length of charm and beauty hadrons much larger than that of prompt sources
	- \rightarrow Electrons do not point back the vertex

DCA for pairs taking into account the DCA resolution:

$$
DCA_{ee} = \sqrt{\frac{(DCA_1/\sigma_1)^2 + (DCA_2/\sigma_2)^2}{2}}
$$

 \rightarrow Method only relies on the well-known decay kinematic \rightarrow Independent of cocktail and theory input

Test separation of prompt and non-prompt sources in J/ψ mass region:

- $-J/\psi$ contribution dominates and is well constraint by independent ALICE measurements
- Only 2 other components: charm & beauty scaled by the modified-HF cocktail
	- \rightarrow Relative contributions of different hadrons: Combined based on measured fragmentation functions and branching ratios

Data well described by the sum of all templates \rightarrow Validating the DCA resolution in the MC simulation

Extraction of prompt thermal signal via template fits:

- Beauty contribution fixed via separate fit at high p_{Tee} bb 0.74 \pm 0.24(stat.) \pm 0.12(syst.) (w.r.t. N_{coll} scaling)
- Simultaneous fit of charm and prompt contribution cc: 0.43 \pm 0.40(stat.) \pm 0.22(syst.) (w.r.t. N_{coll} scaling) prompt: 2.64±3.18(stat.)±0.29(syst.) (w.r.t. R. Rapp)

Topological separation - DCA_{ee} in IMR fitted

Extraction of prompt thermal signal via template fits:

- Beauty contribution fixed via separate fit at high p_{Tee} bb 0.74 \pm 0.24(stat.) \pm 0.12(syst.) (w.r.t. N_{coll} scaling)
- Simultaneous fit of charm and prompt contribution cc: 0.43 ± 0.40 (stat.) ±0.22 (syst.) (w.r.t. N_{coll} scaling) prompt: 2.64 ± 3.18 (stat.) \pm 0.29(syst.) (w.r.t. R. Rapp)

Results in agreement with:

- Charm suppression
- Thermal contribution in the order of expectations by Rapp/PHSD

Method independent of hadronic cocktail:

- \rightarrow Smaller syst. uncertainties
- \rightarrow More statistics enables the extraction of a thermal dielectron yield in the IMR

Dielectron production in Run 3 and 4

New ITS and upgrade of the TPC to a GEM-based readout system:

- Increased readout rate of 1000 in pp and 100 Pb–Pb
- Improved vertex pointing resolution by a factor larger than 3

Dielectron production in Run 3 and 4

- Increased readout rate of 1000 in pp and 100 Pb–Pb
- New ITS and upgrade of the TPC to a GEM-based readout system:

 Increased readout rate of 1000 in pp and 100 Pb-Pb

 Improved vertex pointing resolution by a factor larger than 3

pp collisions: 200 pb⁻¹ at $\sqrt{s} = 13.$ - Improved vertex pointing resolution by a factor larger than 3

pp collisions: 200 pb⁻¹ at $\sqrt{s} = 13.6$ TeV expected

Large MB data set of pp collisions recorded in 2022/23:

- First look at performance (0.97 pb^{-1})
- \rightarrow Much more compared to full Run 2 (0.03 pb⁻¹)
	- Better separation between prompt & non-prompt sources

ALICE

 $DCA_{ee}^{z}(\sigma)$

ALI-PERF-579539

Dielectron production in Run 3 and 4

- Increased readout rate of 1000 in pp and 100 Pb–Pb
- New ITS and upgrade of the TPC to a GEM-based readout system:

 Increased readout rate of 1000 in pp and 100 Pb-Pb

 Improved vertex pointing resolution by a factor larger than 3

pp collisions: 200 pb⁻¹ at $\sqrt{s} = 13.$ - Improved vertex pointing resolution by a factor larger than 3

pp collisions: 200 pb⁻¹ at $\sqrt{s} = 13.6$ TeV expected

Large MB data set of pp collisions recorded in 2022/23:

- First look at performance (0.97 pb^{-1})
- \rightarrow Much more compared to full Run 2 (0.03 pb⁻¹)
	- Better separation between prompt & non-prompt sources
	- \rightarrow Fully unfold spectrum as a function of DCA

ALICE

Dielectron production in Run 3 and 4

New ITS and upgrade of the TPC to a GEM-based readout system:
 $\frac{1}{8}$
- Increased readout rate of 1000 in pp and 100 Pb–Pb³

- Increased readout rate of 1000 in pp and 100 Pb–Pb
- Improved vertex pointing resolution by a factor larger than 3

pp collisions: 200 pb⁻¹ at $\sqrt{s} = 13.6$ TeV expected

Large MB data set of pp collisions recorded in 2022/23:

- First look at performance (0.97 pb^{-1})
- \rightarrow Much more compared to full Run 2 (0.03 pb⁻¹)
	- Better separation between prompt & non-prompt sources
	- \rightarrow Fully unfold spectrum as a function of DCA

Pb–Pb collisions: 13 nb⁻¹ at $\sqrt{s_{NN}}$ = 5.36 TeV planned

1.5 nb−1 taken during the heavy-ion campaign of 2023

 \rightarrow First look at the performance of the dielectron signal extraction

Summary

Dielectrons analysis from Run 2 are being finalized

Analysis of full Run 2 dataset of pp at \sqrt{s} =13 TeV

 \rightarrow Significant increase in statistics & reduction of syst. uncertainties

 \rightarrow Extraction of direct-photon fraction in MB & HM events

Measurement of dielectron production in central Pb–Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV

- \rightarrow First measurement of direct-photon yield
- \rightarrow Limits for thermal radiation
- → First DCA_{ee} analysis in Pb–Pb to separate thermal radiation & HF background

Data taken in Run 3/4 will significantly increase the precision of these results

Backup

Direct-photon fraction in pp at $\sqrt{s} = 13$ TeV **Comparison to published results**

Significant reduction of statistical and systematic uncertainties in new analysis

- \rightarrow Notable contribution of direct-photons in MB & HM collisions
- \rightarrow Measurement in HM compatible with MB results

Hadronic-cocktail improvements Modeling of HF suppression

Ratio of HF electrons in Pb−Pb/pp

Modify cocktail: Measured $R_{\mathrm{AA}}^{\mathrm{c,b\rightarrow e^\pm}}$ as p_T -dependent weights Contains both CNM & HNM effects \rightarrow However: Affects dielectrons differently CNM: whole pair HNM: each electron independently

Disentangle CNM effects using EPS09

Dielectron spectrum dominated by 1-2 GeV/c region

Hadronic-cocktail improvements Modeling of HF suppression

Modify cocktail: Measured $R_{\mathrm{AA}}^{\mathrm{c,b\rightarrow e^\pm}}$ as p_T -dependent weights

Contains both CNM & HNM effects \rightarrow However: Affects dielectrons differently CNM: whole pair HNM: each electron independently

Disentangle CNM effects using EPS09

Final modification factor $R_{AA}^{c,b\to ee}$ combining CNM & HNM weights \rightarrow More suppression of pairs at higher m_{ee} & p_{Tree}

However: Large uncertainties from HFe R_{AA} & EPS09 inputs Same suppression for charm & beauty hadrons

Hadronic-cocktail improvements

Modeling of HF suppression

Parametrisation of measured of HF electron R_{AA} \rightarrow Contains CNM effects & energy loss in the medium

Disentangle CNM effects using EPS09: $R_{AA}^{c,b\rightarrow e^\pm}=R_{AA,CNM}^{c,b\rightarrow e^\pm}\times R_{AA,HNM}^{c,b\rightarrow e^\pm}$

CNM effects & energy-loss affect pair production differently

Direct-photon yield in central Pb−Pb at $\sqrt{s_{NN}}$ = 5.02 TeV

 p_T -differential spectrum

First direct-photon p_T -differential spectrum at $\sqrt{s_{NN}} = 5.02$ TeV

Hybrid model: Contributions from all stages of the collision

- Prompt photons from NLO pQCD calculations
- Pre-equilibrium contributions
- Thermal (QGP & hadronic gas)
- $N_{\gamma^{\text{dir}}}$ consistent with only prompt photons However: All central values above pQCD baseline

Measurement also described by full model prediction But: Data overestimated by $\sim 1\sigma$

Pair-momentum spectrum

Comparison to hadronic cocktail, including:

- N_{coll} -scaled HF measured in pp at $\sqrt{s} = 5.02$ TeV \rightarrow Vacuum baseline
- Include measured R_{AA} of $c/b \rightarrow e^{\pm}$ \rightarrow Modified-HF cocktail

Studying the HF as a function of pair momentum:

- \blacksquare Increasing suppression at high $p_{\text{T,ee}}$ compared to pp
- Modified-HF cocktail improves the data description

Caveats: Cocktail modification introduces additional uncertainties

- Large uncertainties limit the interpretation of the data
- Applies same modification to charm and beauty

 \rightarrow Cocktail independent method needed to access QGP

Topological separation – DCA_{ee} in IMR scaled

Comparison to cocktail-scaled templates in the IMR:

- N_{coll} -scaled HF measured in pp at $\sqrt{s} = 5.02$ TeV \rightarrow Vacuum baseline
- Include measured R_{AA} of $c/b \rightarrow e^{\pm}$ \rightarrow Modified-HF cocktail

Again, the data favors a reduced contribution of HF \rightarrow Hint for a larger suppression of charm

Comparison to expectation from theory by normalizing the prompt template to their respective integral

- \rightarrow Expected thermal signal in the order of 10-40%
- \rightarrow Consistent within current uncertainties

Dielectron production in central Pb−Pb at $\sqrt{s_{NN}}$ = 5.02 TeV **Topological separation –** DCA_{ee} in IMR fitted

10% Extraction of prompt thermal signal via template fits:

- Beauty contribution fixed via separate fit at high p_{Tee} bb 0.74 \pm 0.24(stat.) \pm 0.12(syst.) (w.r.t. N_{coll} scaling)
- Simultaneous fit of charm and prompt contribution cc: 0.43 ± 0.40 (stat.) ±0.22 (syst.) (w.r.t. N_{coll} scaling) prompt: 2.64±3.18(stat.)±0.29(syst.) (w.r.t. R. Rapp)

Dielectron production in Run 3 and 4

New ITS and upgrade of the TPC to a GEM-based readout system:

- Increased readout rate of 1000 in pp and 100 Pb–Pb
- Improved vertex pointing resolution by a factor larger than 3

Large data set of pp collisions recorded in 2022/23:

- First look at performance (0.97 pb^{-1}) \rightarrow Much more compared to full Run 2 (0.03 pb⁻¹)

- Better separation between prompt & non-prompt sources

Expected: 200 pb^{-1} in pp at $\sqrt{s} = 13.6$ TeV 13 nb⁻¹ in Pb–Pb at $\sqrt{s_{NN}}$ = 5.36 TeV

Dielectron production in Run 3 and 4

New ITS and upgrade of the TPC to a GEM based readout system:

- Increase the readout rate in Pb–Pb by a factor 100
- Improve the vertex pointing resolution by a factor 3-6 \rightarrow Improves topological separation (DCA_{ee})

