Evidence of Medium Response to Hard Probes with Z⁰-tagged Hadrons in PbPb and pp at 5.02 TeV

Yen-Jie Lee

For the CMS Collaboration

12th International Conference on Hard and Electromagnetic Probes of High-Energy Nuclear Collisions, Nagasaki, Japan

QGP Transport Properties and Structure with Jets

- Jet broadening effects from multiple soft scattering $(\hat{q}) \longrightarrow$ and medium induced radiation
- Contribution from medium response
- Reveal medium recoil (the propagation of QGP holes / Negative walke)
- With the precise understanding of the phenomena above, one could reveal the QGP structure with Moliere scattering

See also: *Molly Taylor: Photon-tagged Jet Δ_j in PbPb *Matthew Nguyen: Photon-tagged Jet R_q and Girth in PbPb

^{*}Raghunath Pradhan: inclusive Jet Δ_j in PbPb *Yi Chen: Z-Tagged EEC in PbPb

^{*}Jussi Viinikainen: inclusive jet EEC in PbPb *Dener De Souza Lemos: Dijet in pPb

Medium Response to Hard Probes in QED

Bullet plowing through an apple

More apple going in the bullet direction

More water going in the duck direction

In Position Space

Medium Response to Hard Probes in QGP

Quark plowing through the QGP

JETSCAPE framework Tachibana, Shen, Majumder PRC 106 (2022), L021902

 γ -jet + Medium Excitation

PRC 79 (2009) 034902

More QGP going in the jet direction

Duck swimming through water

More water going in the duck direction

In Position Space

PRC 95 (2017) 4, 044909

 γ -jet + Medium

CoLBT Chen, Cao, Luo, Pang, Wang

PLB 777 (2018) 86-90

Medium Response to Hard Probes in Momentum Space

In Momentum Space

Measure the "Depletion" due to Medium Recoil

→ Measure the Boson-side associated yield with Z⁰-Jet

In Momentum Space

Z⁰ Boson and Charged Hadron Track Selection

• $Z^0 \rightarrow \mu^+ \mu^-$ selections:

- Muons: $|\eta_{\mu}| < 2.4$, $|p_{T,\mu}| > 20$ GeV/c,
- Z⁰ Bosons:
 - $60 \text{ GeV/c}^2 < M_{\mu\mu} < 120 \text{ GeV/c}^2$
 - 40 GeV/c $<|p_{T,Z}^{PP}| < 350$ GeV/c
 - $|y_z| < 2.4$

Charged hadron selections:

- $|\eta_{ch}| < 2.4$, $1 < p_{T,ch} < 10$ GeV/c.
- Muon rejection: $\Delta R_{ch,\mu} > 0.0025$ between Muon candidates and charged hadron tracks

Z⁰-Hadron Correlation Function: Event Mixing

Average **Signal pair** distribution:

Average **Background pair** distribution:

$$S(\Delta \phi_{ ext{ iny ch,Z}}, \Delta y_{ ext{ iny ch,Z}}) = rac{1}{N_{_{
m z}}} rac{d^2 N^{^{
m same}}}{d\Delta \phi_{ ext{ iny ch,Z}} d\Delta y_{ ext{ iny ch,Z}}}$$

$$\Delta N_{ch} = S - B$$

$$B(\Delta\phi_{ ext{ch,Z}},\Delta y_{ ext{ch,Z}}) = rac{1}{N_{ ext{z}}}rac{d^2N^{ ext{mix}}}{d\Delta\phi_{ ext{ch,Z}}d\Delta y_{ ext{ch,Z}}}$$

mixed event pairs

$$\Delta y_{ch,Z} = y_z - \eta_{ch}$$
$$\Delta \phi_{ch,Z} = \phi_z - \phi_{ch}$$

Demonstration with PYTHIA+HYDJET (Generator level events)

Integral of the ΔN_{ch} correlation function will be ~0

Mixed Event Subtraction in PYTHIA8 pp Events

- Mixed event subtraction is also performed in pp analysis
- Tight correlation between charged hadron in jet and Z⁰ not only in Δφ but also Δy due to Z⁰ p_T and rapidity selection
- The procedure suppresses the uncorrelated "MPI ridge" at fixed $\Delta \eta$ (Δy)

Yen-Jie Lee (MIT)

Theoretical Predictions

Data recorded: 2011-Dec-01 14:35:39 907994 GMT

Results

Can we see an unambiguous evidence of the QGP wake created by a fast moving quark?

Azimuthal Angle Distributions in pp and 50-100% PbPb

50-100% PbPb and pp reference are consistent within experimental uncertainties

Azimuthal Angle Distributions in pp and 30-50% PbPb

PbPb: Clear relative depletion in Z^0 side ($\Delta \varphi = 0$)

PbPb: **Jet side peak** ($\Delta \phi = \pi$) reduced due to jet quenching at high hadron p_T

Azimuthal Angle Distributions in pp and 0-30% PbPb

Low Charged Hadron p_T

PbPb: Effect reduced in the intermediate p_T region (2-4 GeV)

High Charged Hadron p_T

PbPb: Clear depletion in Z^0 side ($\Delta \varphi = 0$) and enhancement in jet side ($\Delta \varphi = \pi$)

PbPb: **Jet side peak** ($\Delta \phi = \pi$) reduced due to jet quenching at high hadron p_T

Azimuthal Angle Distributions in pp and 0-30% PbPb

Azimuthal Angle Distributions in pp and 0-30% PbPb

Rapidity Distributions in pp and 0-30% PbPb

Azimuthal Angle Distribution in 0-30% PbPb vs. Theory w/o Medium Response

- Hybrid without wake and Jewel without recoil (dashed lines) underpredict magnitude at low hadron p_T
- PYTHIA8 lower p_T Z⁰ events: can approximate jet quenching (similar to no-wake/recoil models with only the jet shower). It fails to describe data for hadron $p_T < 4$ GeV.

CMS Preliminary PbPb (pp) 5.02 TeV 1.67 nb⁻¹ (301 pb⁻¹) 40<p^Z₊<350 GeV 1<p_ch<2 GeV 2<p_r^{ch}<4 GeV 4<p_ch<10 GeV $|y_{z}| < 2.4$ $\mathrm{d}\langle\Delta\mathrm{N}_{\mathrm{ch}}\rangle/\mathrm{d}\Delta\phi_{\mathrm{ch,Z}}$ PbPb 0-30% Hybrid No wake PbPb 0-30% Reflected Jewel No recoil PYTHIA8 p^Z>20 GeV dd Quark (Gluon)

CMS-PAS-HIN-23-006

(Another test on magnitude of negative ΔN_{ch} near Z^0 without recoil/wake)

40 GeV Z + 40 GeV jet $\xrightarrow{\text{Quench}}$ 40 GeV Z + quenched jet + recoil/wake $\xrightarrow{\text{Approx.}}$ 20 GeV Z + 20 GeV pythia jet + recoil/wake

Azimuthal Angle Distribution in 0-30% PbPb vs. Theory

- Hybrid without wake and Jewel without recoil (dashed lines) underpredict magnitude at low hadron p_T
- Hybrid with wake, Jewel with recoil and CoLBT with wake (solid lines) agree better with the data with hadron $p_T < 4$ GeV

Rapidity Distribution in 0-30% PbPb vs. Theory without Medium Response

- Hybrid without wake and
 Jewel without recoil (dashed lines)
 underpredict magnitude at low hadron p_T
- Lower $p_T Z^0$ tagged PYTHIA8 events also fails to describe data with hadron $p_T < 4$ GeV.

Rapidity Distribution in 0-30% PbPb vs. Theory

- Hybrid without wake and Jewel without recoil (dashed lines) underpredict magnitude at low hadron p_T
- Hybrid with wake, Jewel with recoil and CoLBT (solid lines) agree better with data

RIDING THE WAKE

CMS-PAS-HIN-23-006

With Δy and $\Delta \phi$ spectra at low charged hadron p_T:

The first evidence of negative QGP wake!

Summary and Outlook

 First p_T^{ch} differential measurement of Z⁰-hadron correlation in azimuthal angle and rapidity

 We report the first direct evidence of medium response in QGP

 High statistics analysis with Run3+4 data in the near future

1<p_ch<2 GeV

Acknowledgement

Thank You!

Backup Slides

2D Distribution (pp PYTHIA)

Track = 1-2 GeV

2-4 GeV

4-10 GeV

Low Track p_T

High Track p_T

2D Results (PYTHIA+HYDJET 0-90% - PYTHIA)

Track = 1-2 GeV

2-4 GeV

4-10 GeV

Closure test for the 2D plots: Good closure achieved

2D Results (PbPb 0-90% - pp rebin)

2-4 GeV

4-10 GeV

It is fun to see the "color inversion" in the 3 panel plot Different behavior between low and high p_T tracks

Systematics

Systematics related to associated yield

- **Tracking efficiency**: 2.4% for pp and 5.0% for PbPb (of the associated yield)
- **PU (pp only)**: Difference between nPV = 1 and inclusive sample
- Centrality (PbPb only): max absolute difference between nominal and varied (up and down) hiBin definition provided by global observable group
- **Muon efficiency:** vary the Z selection efficiency correction by 12 different variations in PbPb and 4 in pp, as defined by Dilepton / Muon mini-POG
- Muon-track matching: turn on or off the muon track charged particle angular matching rejection (negligible)

Yen-Jie Lee (MIT)

Analysis Workflow: Event-Mixing

MC: embedded MC: embedded Data: PbPb Data: PbPb Uncorrelated Correlated with Z1 with Z1 "Excess correlation" with Z Uncorrelated Uncorrelated with Z1 with Z1 Event 1 Event 2 Normalize to 0 by construction Correlated with Z Shape of correlation function across in event 2, but measurement range not correlated e.g. small $\Delta \phi$ vs large $\Delta \phi$ with Z in event 1 Combining with expected number of particles reproduces event mixing result Apply same procedure on pp data to quantify effect from QGP Same population of events

Results: Azimuthal Angle Distribution

- Open markers are the same as filled data points but reflected to show the full range
- Low track P_T: clear relative depletion in Z side and enhancement in jet side
- High track P_T: jet quenching effect suppresses jet peak
- Effect disappears in 50-90%

Results: Rapidity Distributions

- Focus on the Z side: $|\Delta \Phi_{ch,Z}| < \pi/2$
- Integral not zero since this is not full range of ΔΦ
- Low track p_T: clear depletion observed
- High track p_T: PbPb shallower shape

Theory Comparison on Δφ Spectra

Theory Comparison on Δy Spectra

Theory Comparison: Azimuthal Angle Distribution in 0-30% PbPb

- Hybrid without wake and Jewel without recoil (dashed lines) underpredict magnitude at low hadron p_T
- PYTHIA8 lower p_T Z-tagged events, can approximate jet quenching (similar to nowake/recoil models with only the jet shower). It fails to describe data for hadron $p_T < 4$ GeV.
- **PYQUEN**, (no 4-momentum conservation), fails to describe generally the data

40 GeV Z + 40 GeV jet -

Theory Comparison: Rapidity Distribution in 0-30% PbPb

 Hybrid without wake and Jewel without recoil (dashed lines) underpredict magnitude at low hadron p_T

- PYQUEN fails to describe the data in all p_T intervals

•Lower p_⊤ Z tagged PYTHIA8 events also fails to describe data with hadron p_{T} < 4 GeV.

CMS-PAS-HIN-23-006

PYTHIA8 Z⁰+Jet Event with Different Z⁰ p_T Thresholds

 ΔN_{ch} Spectra with Charged Hadron 4 < p_T < 10 GeV

Predictions from Models for Charged Hadron p_T 1-2 GeV

Predictions from Models for Charged Hadron p_T 1-2 GeV

