First measurement of the D⁰ production in photonuclear ultraperipheral heavy ion collisions with CMS to probe low-x nuclear matter

Chris McGinn on behalf of the CMS collaboration

HardProbes, Nagasaki

25 September 2024

MITHIG group's work was supported by US DOE-NP

UPC at the LHC

- Relativistic heavy-ions induce strong EM fields
- Ultraperipheral collisions (UPCs) occur when quasireal photons interact w/o nuclear overlap

g

UPC at the LHC

- Relativistic heavy-ions induce strong EM fields
- Ultraperipheral collisions (UPCs) occur when quasireal photons interact w/o nuclear overlap
- Results in UPC dijets, J/ ψ , other processes
 - Probing partonic densities across a broad x, Q²

Dijets! J/ψ !

What else?

Institute of

Christopher McGinn

Open Heavy Flavor in UPCs

- Mass of charm \rightarrow pQCD control at p_{T} =0!
- Probes $\mathbf{Q}^2 \sim (\text{charm/bottom mass})^2$
- Complements higher \mathbf{Q}^2 of dijets down to $\mathbf{Q}^2~\mathbf{J}/\psi$
- Excellent control for higher order theory corrections

Open Heavy Flavor in UPCs

- 1. Select On ZDC signal
 - γ -going

- 1. Select On ZDC signal
 - γ -going
- 2. Xn ZDC signal indicating nuclear breakup

• Pb-going

- 1. Select On ZDC signal
 - γ -going
- 2. Xn ZDC signal indicating nuclear breakup

• Pb-going

3. Rapidity-gap in $\gamma\text{-going direction}$

- 1. Select On ZDC signal
 - γ -going
- 2. Xn ZDC signal indicating nuclear breakup

• Pb-going

- 3. Rapidity-gap in $\gamma\text{-going direction}$
- 4. D⁰ candidate in tracker acceptance
 - Via $\mathbf{K}^-\pi^+$ decay channel

- 1. Select On ZDC signal
 - γ -going
- 2. Xn ZDC signal indicating nuclear breakup

• Pb-going

- 3. Rapidity-gap in $\gamma\text{-going direction}$
- 4. D⁰ candidate in tracker acceptance
 - Via K $^{-}\pi^{+}$ decay channel

Semi-inclusive measurement by Xn0n selection

- \rightarrow Diffractive component reduced
- \rightarrow Inclusive selection for direct/resolved processes
- \rightarrow Inclusive selection for prompt/nonprompt

Triggering with the ZDC

• ZDC positioned \pm 140m from IP

Signal indicates nuclear breakup

ZDC Layout

Zero-Degree Calorimeters $|\eta| > 8.3$ (0.5 mrad)

 \rightarrow detect neutrons produced in the nuclear break-up process

Tochnology

Triggering with the ZDC

Trigger Strategy for D⁰

- + D⁰ $p_{\rm T}$ 2-5 GeV on pure ZDC based trigger
- $D^0 p_T > 5$ GeV add hardware jet trigger
 - Threshold Jet *p*_T > 8 GeV

Trigger Strategy for D⁰

Rapidity Gap Selection

- Require also a $\gamma\text{-going rapidity gap}$
- Tuned to minimize bias to resolved events

Rapidity Gap Selection

D⁰ Selection and Efficiency (I)

D⁰ candidates are constructed from tracks

- **1.** $p_{\rm T}$ > 1 GeV
- **2.** |η| < **2.4**
- 3. Passing high-purity condition

D⁰ Selection and Efficiency (I)

D⁰ candidates are constructed from tracks

- 1. *p*_T > 1 GeV
- **2.** |η| < **2.4**
- 3. Passing high-purity condition

Selections on D^0 kinematics (p_T and y dependent)

- 1. Pointing angle (α)
- 2. Decay length significance
- 3. Secondary vertex probability
- 4. Opening angle between decay products ($\Delta \theta$)

D⁰ Selection and Efficiency (II)

CMS-HIN-24-003

D⁰ candidates are constructed from tracks

- 1. *p*_T > 1 GeV
- **2.** |η| < **2.4**
- 3. Passing high-purity condition

Selections on D^0 kinematics (p_T and y dependent)

- 1. Pointing angle (α)
- 2. Decay length significance
- 3. Secondary vertex probability
- 4. Opening angle between decay products ($\Delta \theta$)

PbPb UPCs (5.36 TeV)

Reco. Efficiency Analysis is inclusive for prompt/nonprompt D⁰

D⁰ Yield Extraction

CMS-HIN-24-003

Institute of Technology

• Background modeled with exponential; K⁺K⁻, $\pi^+\pi^-$ with Crystal Ball

D⁰ Systematic Uncertainties

- Trigger correction uncertainty
- Rapidity gap selection uncertainty by varying HF energy threshold
- Global uncertainties from luminosity and ${\rm D}^{\rm 0} \rightarrow {\rm K}^{-}\pi^{+}$ branching ratio
- Tracking uncertainty accounting for Data/MC differences
- Prompt/non-prompt fraction Data/MC differences
- D⁰ selection uncertainties; vary kinematic selections and re-extract yield/efficiency
- Uncertainties in efficiency from Data/MC
 - Differences in D⁰ spectral shape
 - Differences in event multiplicities
- Fit modeling uncertainties
 - Varying background shape from exponential to 2nd order Chebyshev polynomial
 - Fixing the mean of the signal peak to MC value
 - Modeling of the ${\rm K}^+{\rm K}^-$ and $\pi^+\pi^-$ peaks

Blue \rightarrow a typically dominant uncertainty for $p_{\rm T}$ > 5 GeV

D^0 Differential Cross Sections in p_T , y

D^0 Differential Cross Sections in p_T , y

Extracted for Xn0n (left) and 0nXn (right) conditions

Institute of

- Result probes a broad range in x and Q^2 , with p_T and rapidity coverage
- Statistically consistent after rapidity reflection; combine for theory comparisons

D⁰ Theory Comparisons (I)

FONLL w/ EPPS21 nPDFS

- Light blue band indicates scale uncertainty
- Hatched dark blue band is nPDF uncertainty
- Via A.M. Stasto et al., paper in preparation

- $\mathbf{2} < \mathbf{D^0} \; p_{\mathbf{T}} < \mathbf{5} \; \mathbf{GeV}$
 - Lowest x/Q² probe
 - Central value slightly below FONLL
 - Observe agreement within theoretical and experimental uncertainties

D⁰ Theory Comparisons (II)

FONLL w/ EPPS21 nPDFS

- Light blue band indicates scale uncertainty
- Hatched dark blue band is nPDF uncertainty
- Via A.M. Stasto et al., paper in preparation

$\mathbf{5} < \mathbf{D^0} \; p_{\mathbf{T}} < \mathbf{8} \; \mathbf{GeV}$

- Intermediate x/Q 2 probe; add y dependence
- Central value consistent-to-below FONLL
- Observe agreement within theoretical and experimental uncertainties

D⁰ Theory Comparisons (III)

FONLL w/ EPPS21 nPDFS

- Light blue band indicates scale uncertainty
- Hatched dark blue band is nPDF uncertainty
- Via A.M. Stasto et al., paper in preparation

8 < D⁰ $p_{\rm T}$ < 12 GeV

- Highest x/Q² probe; add y dependence
- Central value slightly above FONLL
- Observe agreement within theoretical and experimental uncertainties

Conclusions

- First measurement of UPC D⁰ differential cross sections at the LHC
- New sensitivity to nPDFs over a broad x, Q² with a pQCD controlled probe
 - Constraints from the cleaner UPC (compared to hadronic) environment
- Opening a new program at CMS; stay tuned!

Institute of

Technology

The CMS Detector

Christopher McGinn

Institute of Technology

Study of HI enabled by The CMS Detector

- Silicon trackers for charged hadrons
- ECAL for photons / π^0
- HCAL for neutrals
- Forward calorimeters for event activity / centrality
- All detectors in combination produce jets

18

ZDC in Empty Bunches

Empty bunches used to map noise distributions

HF in Empty Bunches

Empty bunches used to map noise distributions

Data/MC Comparisons (I)

• Track mult. distributions in data and MC

Data/MC Comparisons (II)

• Track $p_{\rm T}$ distributions in data and MC

Data/MC Comparisons (III)

• Track η distributions in data and MC

Mass Fits, 5-8 GeV in OnXn

Remaining mass fits for all rapidity bins in 5-8 GeV, 0nXn

Mass Fits, 8-12 GeV in 0nXn

Remaining mass fits for all rapidity bins in 8-12 GeV, 0nXn

Probability of No-breakup from EMD

UPCs Pythia8+STARlight simulation Flux+EMD parametrization from arXiv:2404.09731 D⁰ rapidity 2 -0.75 1.5 0.54 0.49 0.40 -0.7 Vo-breakup probability -0.65 0.5 0.64 0.57 0.48 0.6 0 0.55 -0.5 0.71 0.66 0.60 0.5 _ 0.45 -1.5 0.77 0.69 0.69 0.4 -22 3 10 11 12 D⁰ p₊ [GeV/c] 12 4 5 6 7 8 9

Corrections for comparing theory-to-data

Benchmarking FONLL

FONLL compared to HERA H1 data μ_R/μ_0 varied from 0.5-2.0 μ_F/μ_0 varied from 0.5-2.0 GRV parametrized γ PDF

Following Cacciari, Greco, Nason