Recent Probes of *b*-quark Hadronization at LHCb

Julie Berkey, *jlnelson@lanl.gov* on Behalf of the LHCb Collaboration

A G A S A K September 23-27, 2024

Heavy Quark Production

- Valence quarks of colliding beams don't contain heavy quarks
- Production is dominated by hard parton-parton interactions during initial stages of the collision
- Quantity is essentially fixed in the early stages of collisions

Heavy Quark Production

NATIONAL LABORATORY

- Valence quarks of colliding beams don't contain heavy quarks
- Production is dominated by hard parton-parton interactions during initial stages of the collision
- Quantity is essentially fixed in the early stages of collisions

The link between QCD and observable particles

- The defining feature of QCD is **confinement** :
 - Prohibits partons from being observed as free particles
 - Partons only found as constituents of color-neutral hadrons

The link between QCD and observable particles

- The defining feature of QCD is **confinement** :
 - Prohibits partons from being observed as free particles
 - Partons only found as constituents of color-neutral hadrons

The link between QCD and observable particles

- The defining feature of QCD is **confinement** :
 - Prohibits partons from being observed as free particles
 - Partons only found as constituents of color-neutral hadrons

Recent data challenges the notion that hadronization is universal across different collision systems

Hadronization Mechanisms - Fragmentation

- Potential between quarks increases until it becomes more energetically favorable to produce quarks in vacuum to maintain color confinement
- Models tuned precisely to data from e^+e^- collisions

Hadronization Mechanisms - Fragmentation

- Potential between quarks increases until it becomes more energetically favorable to produce quarks in vacuum to maintain color confinement
- Models tuned precisely to data from e^+e^- collisions

Models **FAIL** to describe particle production in *pp*, *p*A, and AA collisions

Hadronization Mechanisms – Quark Coalescence

Event display from ALICE

- Quarks overlap in position/velocity space and form color neutral hadrons
- Expected to occur in particle-dense environments and at relatively low p_T

Hadronization Mechanisms – Quark Coalescence

Event display from ALICE

- Quarks overlap in position/velocity space and form color neutral hadrons
- Expected to occur in particle-dense environments and at relatively low p_T

Enhanced production of hadrons with strange quarks and 3-quark baryons

The Large Hadron Collider beauty (LHCb)

The LHCb Detector: Forward rapidity coverage, full tracking, particle identification, electromagnetic calorimetry, and muon ID

Julie Berkey

NATIONAL LABORATORY

Strangeness Probes into Hadronization

Julie Berkey

11

Strangeness Enhancement – Open Charm

• Enhanced D_s^+ yields at lower p_T as charged particle multiplicity increases

Strangeness Enhancement – Open Charm

- Enhanced D_s^+ yields at lower p_T as charged particle multiplicity increases <u>Yiheng Luo &</u>
- Enhancement dominated by final state effects

os Alamos.

NATIONAL LABORATORY

Julie Berkey

Jianqiao Wang

Posters

13

 Low multiplicity yields consistent with fragmentation values measured in e⁺e⁻ collisions

15

 Low multiplicity yields consistent with fragmentation values measured in e⁺e⁻ collisions

- Low multiplicity yields consistent with fragmentation values measured in e⁺e⁻ collisions
- At low p_T there is evidence of enhanced B_s^0/B^0 yields

- Low multiplicity yields consistent with fragmentation values measured in e⁺e⁻ collisions
- At low p_T there is evidence of enhanced B_s^0/B^0 yields

• Higher p_T B mesons show no enhancement

lamos

DNAL LABORATORY

B-baryon Probes into Hadronization

Julie Berkey

NATIONAL LABORATORY

B-baryon Enhancement vs pT

- Hadronic decays confirm strong dependence on p_T
- Hadronic and semileptonic decay data agree
- Data agrees with *p*Pb (within large uncertainties)

B-baryon Enhancement vs pT

NATIONAL LABORATORY

- Hadronic decays confirm strong dependence on p_T
- Hadronic and semileptonic decay data agree
- Data agrees with *p*Pb (within large uncertainties)
- PYTHIA8 (default settings)

- \circ Dramatically underestimates low p_T data
- \circ High p_T data converges to model values
- EPOS4HQ follows the same trend as PYTHIA8
- EPOS4HQ+coal generally overshoots data

B-baryon Enhancement vs pT

NATIONAL LABORATORY

- Hadronic decays confirm strong dependence on p_T
- Hadronic and semileptonic decay data agree
- Data agrees with *p*Pb (within large uncertainties)
- PYTHIA8 (default settings)
 - \circ Dramatically underestimates low p_T data
 - \circ High p_T data converges to model values
- EPOS4HQ follows the same trend as PYTHIA8
- EPOS4HQ+coal generally overshoots data
- Compare to Statistical Hadronization Model that uses two sets of baryons as input:
 - Expanded set of baryons predicted by the Relativistic Quark Model
 - Known baryons from PDG

B-baryon Enhancement vs multiplicity

Baryon/meson ratio shows multiplicity dependence

23

b-baryon Enhancement vs multiplicity

- Baryon/meson ratio shows multiplicity dependence
- Expected in scenario where b quarks coalesce with light quarks to form baryons

NATIONAL LABORATORY

b-baryon Enhancement vs multiplicity

- Reproduce e^+e^- result as multiplicity approaches zero
- b quarks in low multiplicity environments have nothing to coalesce with fragment in vacuum

NATIONAL LABORATORY

b-baryon Enhancement vs multiplicity

 SHM reproduces plateauing trend

NATIONAL LABORATORY

 All possible baryon states are populated at high multiplicity

- Reproduce e^+e^- result as multiplicity approaches zero
- b quarks in low multiplicity environments have nothing to coalesce with - fragment in vacuum

B-baryon Enhancement via Coalescence

B-baryon Enhancement via Coalescence

Clear multiplicity dependence at low p_T lacksquare

B-baryon Enhancement via Coalescence

• Clear multiplicity dependence at low p_T

lamos

NATIONAL LABORATORY

Reproduce e⁺e⁻ result at high p_T where b quarks don't interact with the bulk and fragment instead

Coalescence in Exotic Measurements

- Ratio mostly cancels out initial state effects
- Enhanced X(3872) as hadronic environment becomes more dense
- Potential coalescence for tetraquarks?

Matt Durham

- LHCb is well suited to study hadronization.
- Heavy quarks are an extremely useful tool for studying hadronization.
- The universality of hadronization fails across different collision systems.
- Clear indication that the QCD medium affects the hadronization process.

Los Alamos is supported by the US Dept. of Energy/Office of Science/Office of Nuclear Physics and DOE Early Career Awards program

The Large Hadron Collider beauty (LHCb)

