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Background

@ Deep Inelastic Scattering (DIS):
//

\j” _q2 — Q2

@ Measured cross sections expressed in terms of structure functions

@ Structure functions expressed in terms of parton distribution functions (PDFs)
Fi(x, Q%) = > Ci(@* )@ f(1?) j=q,G,8 p = factorization scale

@ The conventional procedure:

» PDFs are fitted to DIS data (to structure functions)
> Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) evolution: PDFs to higher @
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Motivation

@ Structure functions will be measured at Electron-lon Collider (EIC)
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Motivation

@ Structure functions will be measured at Electron-lon Collider (EIC)

@ Problems with PDFs
» Parametrize non-observable quantities
» Factorization scheme dependence
> Need to define the relation between factorization scale and a physical scale

Physical basis = set of linearly independent DIS observables

@ DGLAP evolution of observables in a physical basis

> Avoiding the problems with PDFs
> More straightforward to compare to experimental data

Previously discussed e.g. in Harland-Lang and Thorne 1811.08434, Hentschinski
and Stratmann 1311.2825, W.L. van Neerven and A. Vogt hep-ph/9907472
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Motivation

@ Structure functions will be measured at Electron-lon Collider (EIC)

@ Problems with PDFs
» Parametrize non-observable quantities
» Factorization scheme dependence
> Need to define the relation between factorization scale and a physical scale

Physical basis = set of linearly independent DIS observables

@ DGLAP evolution of observables in a physical basis

> Avoiding the problems with PDFs
> More straightforward to compare to experimental data

Previously discussed e.g. in Harland-Lang and Thorne 1811.08434, Hentschinski
and Stratmann 1311.2825, W.L. van Neerven and A. Vogt hep-ph/9907472

@ The novelty of our work:

» Momentum space
> Full three-flavor basis at NLO

@ Continuation for LO physical basis 2304.06998
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Straightforward example with only two observables
\fa _q2: Q? Fi(X7 QZ):ZCFiG(Qz>H2)®6(M2))
j

where F; = F,, F, /52, and =X, g

27
Quark singlet:

T (x, p%) = 20 [a(x, 1) +G(x, p?)], mp =3
Gluon PDF: g(x, u?)
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Straightforward example with only two observables
\7 _q2: Q? Fi(X7 QZ):ZCFiG(Qz>N2)®6(M2))

where F; = >, F, /5=, and fi =X, g
Quark singlet:

T (x, p%) = 20 [a(x, 1) +G(x, p?)], mp =3
Gluon PDF: g(x, u?)

First step: invert the linear mapping (difficult because f ® g = fl Lf(2)g (%))

f(17) = 32 Crp (@ 17) @ Fi(@) + 0(a?)
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Straightforward example with only two observables
\i]a _q2: Q? Fi(X7 QZ):ZCEG(Q27N2)®6(U2))
j

where F; = F5, FL/S‘—;, and =2, g

Quark singlet:
T p2) = o0 [a(x, 12) +G(x, 12)], mp =3
Gluon PDF: g(x, 11?)

First step: invert the linear mapping (difficult because f ® g = fl Lf(2)g (%))

fi(1?) =3, Cre(Q% 11?) @ Fi(Q%) + O(a?)
DGLAP evolution in physical basis

dFi(x, Q?) ZdCFfQ , 1%)

f: 2
‘dlog(@?) dlog(Q?) @ 6(1)

ACrr(Q?
B Z dFI;g Q2ﬂ . Z Cr (@2 1?) © F(@) + O(a3)
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Scheme and scale dependence at NLO

DGLAP evolution in physical basis:

dFi(x, @) chﬁﬁ(Q 1)
‘dlog(Q?) dlog(Q?)

= Zm ® Fu(@?) + O(a?)

k

®ZCka(QZ 12) ® Fi(@) + O(a?)

Kernels Pj, are independent of the factorization scheme and scale

4/10



Scheme and scale dependence at NLO

DGLAP evolution in physical basis:

dFi(x, @) chﬁﬂ(Q 1)
‘dlog(Q?) dlog(Q?)

= Zm ® Fu(@?) + O(a?)

k

®ZCka(Qz 12) ® Fi(@) + O(a?)

Kernels Pj, are independent of the factorization scheme and scale

Pjj's determined by:
@ Splitting functions

o Coefficient functions
— The scheme and scale dependence exactly cancels between these two
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Inverting the gluon PDF at NLO

Simple example without quarks

®g+§‘—;(_‘(2) Qg FL(X,QZ)E%M

= 1
Invert g(x) from F, = c® Fog

FrLg
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Inverting the gluon PDF at NLO

Simple example without quarks

Rg+ECD) g Fi(x, Q%) = Zaltd)

ko]

Invert g(x) from F, = Cl(fi)g

Define inverse of C ¢ as: g(x

) = P(x)
with P(X)EsTR—lnfég[X di; 2x di—i-Z]
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Inverting the gluon PDF at NLO

Simple example without quarks

Invert g(x) from F, = C,(:i)g ®g+ 5= C,(:i)g Fu(x, Q%) = i—’;@

ko]

Define inverse of C ¢ as: g(x

) = P(x)
with P(X)EsTR—lnfég[X di; 2x di—i-Z]

Get Cﬁi)g © g from Fy: C( ) ©g=FL— ﬁC/(:i)g@)g
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Inverting the gluon PDF at NLO

Simple example without quarks

Rg+ECD) g Fi(x, Q%) = Zaltd)

ko]

Invert g(x) from F, = Cl(fi)g

Define inverse of C  3s: g(x) = P(x)
with P(X) = 8TR1nfé§ [X dif 2x di +2]

Get Cﬁi)g@gfrom IN-_L: Cﬁ?g@gz}—%d” ®g

g(x) = () [Flx) - 228 @ ¢]
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Inverting the gluon PDF at NLO

Simple example without quarks

og+2cd ®

Invert g(x) from F, = c® Fog ®

FrLg

Define inverse of C g as: g( ) = P(x) [Cl(fi)g ®g}

with P(x) = m x? W —2x g +2}

(1) . 1) — . A2
Get Cp’, @ g from Fp: D owg=F-2c® og

g(x) = () [Flx) - 228 @ ¢]
Plug in g(x) = P(x)FL(x) + O (as) to the right hand side

g0) = PLOFL() - 28 p

~ 2
Fu(x, @) = 2= @)

P(x) |2, @ PRL] + 0 (a?)
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Six observable basis (work in preparation)

o Full three-flavor basis: u,7,d,d,s =5, and g
— Need six linearly independent DIS structure functions
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Six observable basis (work in preparation)

o Full three-flavor basis: u,7,d,d,s =5, and g
— Need six linearly independent DIS structure functions

@ We choose the NLO structure functions:

\, 7q2 — Q2

Neutral current ~*, Z Charged current W+

@ 7" exhange — F, and F,

o W~ exhange — RV and )Y
@ Z boson exhange — F3

o ARy =N —FM
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Comparison with conventional DGLAP evolution

Physical basis evolution Evolution with PDFs
e Renormalization scheme in (1) @ Factorization scheme and scale
@ Perturbative truncation @ Renormalization scheme in o (1)
— sum rule not exact o Easy to enforce an exact sum rule
@ Parametization of observable @ Parametization of non-observable

quantities quantities
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Comparison with conventional DGLAP evolution
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@ Similar Q2 evolution
@ Differences in values from:

> uncertainty in PDFs from scheme and scale (error band not shown)

> perturbative truncation 8/10



Cross sections in terms of physical basis

Example of Higgs production by gluon fusion

2
olptp—H+X)= /dX1dX2g(X1- )8 (X2, 1) B gg—H+x (1, X2, %)7

where my is the Higgs mass, g(xi, 1) and g(x2, p) are the gluon PDFs
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Cross sections in terms of physical basis

Example of Higgs production by gluon fusion

2
. m
olp+p—H+X) = /dX]_dXQg(XL 1)g(x2, 1) gg—Hx (X1, X2, 'u—g),

where my is the Higgs mass, g(xi, 1) and g(x2, p) are the gluon PDFs
Plug in the gluon PDF in physical basis:  g(x, u?) =, Cj-;l(Qz,/ﬁ) ® F(Q?)

where Fj = Fy, F./ 52, F3, AR, F3V PV
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Cross sections in terms of physical basis

Example of Higgs production by gluon fusion

2
. m
olp+p—H+X)= /XmdXQg(XL 1)8(x2, )8 gg—sHex (X1, X2, 7?),

where my is the Higgs mass, g(xi, 1) and g(x2, p) are the gluon PDFs
Plug in the gluon PDF in physical basis:  g(x, u?) =, ngl(Qz,/ﬁ) ® F(Q?)

where Fj = Fy, F./ 52, F3, AR, F3V PV

olptp—H+X)=

i

2
/dndxﬁggﬁw(n,m, %) Y G e Fj(QZ):| [Z Cog (@7, 1%) ® Fi(Q)
X1

k X2
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Cross sections in terms of physical basis

Example of Higgs production by gluon fusion

2
. m
olp+p—H+X)= /dxld)Qg(xL 1)8(x2, )8 gg—sHex (X1, X2, Tf),

where my is the Higgs mass, g(xi, 1) and g(x2, p) are the gluon PDFs
Plug in the gluon PDF in physical basis:  g(x, u?) =, Cj;l(Qz,/ﬁ) ® F(Q?)

where Fj = Fy, F./ 52, F3, AR, F3V PV

olptp— H+X)=
2
/dndxﬁggﬁw(n,m, %) Y G e Fj(QZ):| [Z Cog (@7, 1%) ® Fi(Q)
j x - K X2

Harland-Lang and Thorne 1811.08434:

explicit 11 dependence vanishes and terms log (Q?/m?) are left behind

— no need to choose relation between 1 and Q or my 010
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@ Goal: formulate DGLAP evolution directly for physical observables
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Summary

Motivation: future DIS measurements at the Electron-lon Collider

@ Goal: formulate DGLAP evolution directly for physical observables

@ We have established physical basis at NLO in ay for six observables;
Fa, Fi, F3, AR, F2¥", and F)Y

Scheme dependence of PDFs play a role at NLO in g
— Scheme and scale dependence avoided in the physical basis

What next:

» Express LHC cross sections, e.g. Drell-Yan, in physical basis
> Include heavy quarks
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Backup: NLO evolution for F3, AR, BV, and FY
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Backup: Sum rule
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Backup: Gluon PDF and quark singlet in physical basis

7 —— Analytical gluon
(%) — - Gluon in physical basis
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