Di-Pions in Ultra-Peripheral Collisions at LHCb

Amanda Donohoe LHCb Collaboration Hard Probes 27/09/2024

Outline

- Introduction
- Motivation
- Structure in the di-pion invariant mass spectrum
- Conclusion

Di-Pions in Ultra-Peripheral Collisions at LHCb

Results

Process of Interest

Results

Process of Interest

Central Exclusive Production (CEP)

Results

Process of Interest

Motivation

Results

Conclusion

Ultra-Peripheral Collisions

Di-Pions in Ultra-Peripheral Collisions at LHCb

Motivation

Results

Conclusion

Ultra-Peripheral Collisions

Di-Pions in Ultra-Peripheral Collisions at LHCb

Motivation

Results

Conclusion

Ultra-Peripheral Collisions

Motivation

Results

Conclusion

Ultra-Peripheral Collisions

Di-Pions in Ultra-Peripheral Collisions at LHCb

 ho^0

Motivation

Results

Conclusion

Ultra-Peripheral Collisions

Di-Pions in Ultra-Peripheral Collisions at LHCb

Amanda Donohoe

Motivation

Results

Ultra-Peripheral Collisions

Motivation

Results

Ultra-Peripheral Collisions

Motivation

Results

Ultra-Peripheral Collisions

Conclusion

Coherent vs Incoherent Interactions

Conclusion

Coherent vs Incoherent Interactions

Conclusion

Coherent vs Incoherent Interactions

Di-Pions in Ultra-Peripheral Collisions at LHCb

- Understanding the di-pion spectrum
- Measured ρ parameters appear process dependent (tau decay, e⁺e⁻, photoproduction)
- low-mass spectroscopy: continuum, ω, high excitations, interference.

Results

Why LHCb?

- A forward-arm spectrometer
 (2 < η < 5)
 - Unique acceptance and capabilities.
 - Constraints nPDFs down to $x \sim 10^{-6}$
- Precise Tracking and Full PID.
 - Mass resolution $(m_{\pi\pi}) \sim 5$ MeV.
 - Low background levels

Results

HeRSCHeL Sub-Detector

[3]

HeRSCHeL

- planes of scintillators up and downstream
- extends coverage to $5 < |\eta| < 10$
- Enables distinction between coherent vs incoherent events due to ion dissociation

Di-Pion Lineshape

Di-Pions in Ultra-Peripheral Collisions at LHCb

Data Selection

Data Used

- 2018 PbPb LHCb data
- √sNN = 5.02 TeV
- Integrated luminosity: 228 ± 10 μb⁻¹

Selection Criteria

- Triggered Low Multiplicity Events (SPD < 50)
- Two oppositely charged tracks
- Fiducial region defined by 2.05 < $y_{(parent)}$ < 4.9, $p_{T(Track)}$ > 100 Mev, and 2 < η_{Track} < 5
- Invariant mass > 400 MeV
- Both tracks consistent with being a pion (using PID)
- Transverse momentum of the system < 100 MeV

Resultant Data

• Final sample contains ~12 million candidates

Results

Backgrounds

Backgrounds ~<1%

- Gamma-gamma production:
 - \circ Diphoton production is peaked at low masses and low p_{τ}
 - Hadron cross-section is an order of magnitude lower than leptons.
 - The shape of the γγ→ee/μμ backgrounds were determined by fitting events identified as electrons or muons.
 - The amount of contamination was determined using simulation, the shape is scaled by the ratio of missing leptons compared to the rate for tagging both.
 - Contamination from $\gamma\gamma \rightarrow ee$ and $\gamma\gamma \rightarrow \mu\mu$ processes ~0.5%.

Fitting the Invariant Mass Spectrum

- Söding basic
- Söding with ω (STAR)
- Söding with ω (H1)
- Söding with ω (H1) + form factor + continuum phase + ρ'

Results

(1)

Söding basic

Di-Pions in Ultra-Peripheral Collisions at LHCb

Results

(1)

Söding basic

Di-Pions in Ultra-Peripheral Collisions at LHCb

Results

(1)

+B

flat continuum

Söding basic

Di-Pions in Ultra-Peripheral Collisions at LHCb

Results

(1)

+B

flat continuum

LHCb Pb–Pb

[0.4, 1.2]

 771 ± 3

 150 ± 4

 0.72 ± 0.04

 $0.50^{+0.10}_{-0.06}$

Söding basic

 0.70 ± 0.04

Di-Pions in Ultra-Peripheral Collisions at LHCb

|B/A|

Amanda Donohoe

 0.50 ± 0.05

 0.57 ± 0.09 [45]

Söding + ω (STAR [8])

Di-Pions in Ultra-Peripheral Collisions at LHCb

Amanda Donohoe

33

(2)

Söding + ω (STAR [8])

Di-Pions in Ultra-Peripheral Collisions at LHCb

Amanda Donohoe

34

(2)

Söding + ω (STAR [8])

Di-Pions in Ultra-Peripheral Collisions at LHCb

Amanda Donohoe

35

(2)

Söding + ω (STAR [8])

Di-Pions in Ultra-Peripheral Collisions at LHCb

Amanda Donohoe

Söding + ω (STAR [8])

Di-Pions in Ultra-Peripheral Collisions at LHCb

Amanda Donohoe

Söding + ω (STAR [8])

Di-Pions in Ultra-Peripheral Collisions at LHCb

Amanda Donohoe

Motivation

Results

Söding + ω (H1 [9])

Di-Pions in Ultra-Peripheral Collisions at LHCb

Amanda Donohoe

Motivation

Results

Söding + ω (H1 [9])

Motivation

Results

Söding + ω (H1 [9])

Di-Pions in Ultra-Peripheral Collisions at LHCb

Motivation

Results

Söding + ω (H1 [9])

Di-Pions in Ultra-Peripheral Collisions at LHCb

Results

Fit Results

LHCb Preliminary LHCb-PAPER-2024-042	m LHCb		STAR [8]	H1 [9]
	(Star eq. 2)	(H1 eq. 3)		
$M_{ ho}[{ m MeV}]$	774 ± 3	776 ± 3	776.2 ± 0.2	771 ± 3
$\Gamma_{\rho} \; [\text{MeV} \;]$	156 ± 3	153 ± 3	156 ± 1	151 ± 3
B/A	0.73 ± 0.03	$0.19 \pm .02$	0.79 ± 0.08	0.19 ± 0.04
$\phi_{\omega}[\mathrm{r}ad]$	1.36 ± 0.03	$-0.23 \pm .04$	1.46 ± 0.11	-0.5 ± 0.3
C/A	0.34 ± 0.03	$0.18\pm.01$	0.36 ± 0.05	0.17 ± 0.02
$\Lambda [{ m MeV}]$	-	366 ± 110		180 ± 590
δ	-	$1.07 \pm .11$	-	0.76 ± 0.35

But What about Masses > 1.2 GeV?

Results

Extended Frame

- Data at high mass falls well below fit
- Does not account for clear structure around 1.7 GeV

Motivation

Söding + ω (H1) + form factor + continuum phase + ρ '

Di-Pions in Ultra-Peripheral Collisions at LHCb

Amanda Donohoe

Fit the data with:

(6)

- Added form factor
- High-mass Breit-Wigner
 term
- Interference from continuum

Alternative parameterizations are possible

Motivation

Söding + ω (H1) + form factor + continuum phase + ρ '

Di-Pions in Ultra-Peripheral Collisions at LHCb

Amanda Donohoe

Fit the data with:

- Added form factor
- High-mass Breit-Wigner
 term
- Interference from continuum

Alternative parameterizations are possible

Motivation

Söding + ω (H1) + form factor + continuum phase + ρ '

Motivation

Söding + ω (H1) + form factor + continuum phase + ρ '

Motivation

Motivation

Conclusions and Outlook

Conclusions

- Very clean sample with approximately 1% background
- Extended measurement range to 0.4 2.3 GeV
 - Previous results from 0.6-1.0 GeV (H1 [9]) and 0.6-1.3 GeV (STAR [8])
- Distinct and well-resolved resonance observed at 1.7 GeV
- Full description of the di-pion spectrum requires phenomenological input.

Outlook

• Will feed into cross section measurements.

References

[1] M. Davier, A. Hoecker, B. Malaescu, and Z. Zhang, Reevaluation of the hadronic 385 vacuum polarisation contributions to the Standard Model predictions of the muon g – 2 and α (m2 Z 386) using newest hadronic cross-section data, Eur. Phys. J. C 77 (2017) 387 827, arXiv:1706.09436.

[2] Int. J. Mod. Phys. A 30 (2015) 1530022[3] JINST 13 (2018) no.04, P04017

[4] ZEUS, J. Breitweg et al., Elastic and proton dissociative ρ 0 451 photoproduction at HERA, 452 Eur. Phys. J. C 2 (1998) 247, arXiv:hep-ex/9712020.

[5] H1, F. D. Aaron et al., Diffractive Electroproduction of rho and phi Mesons at HERA, 454 JHEP 05 (2010) 032, arXiv:0910.5831.

[6] CMS, A. M. Sirunyan et al., Measurement of exclusive $\rho(770)0~455$ photoproduction in ultraperipheral pPb collisions at $\sqrt{456}$ sNN = 5.02 TeV, Eur. Phys. J. C 79 (2019) 702, 457 arXiv:1902.01339.

[7] ALICE, J. Adam et al., Coherent ρ 0 400 photoproduction in ultra-peripheral Pb-Pb collisions at $\sqrt{401}$ sNN = 2.76 TeV, JHEP 09 (2015) 095, arXiv:1503.09177.

[8] STAR, L. Adamczyk et al., Coherent diffractive photoproduction of ρ 394 0mesons on gold 395 nuclei at 200 GeV/nucleon-pair at the Relativistic Heavy Ion Collider, Phys. Rev. C 396 96 (2017) 054904, arXiv:1702.07705.

[9] H1, V. Andreev et al., Measurement of Exclusive $\pi + \pi$ – and ρ 388 0 Meson Photoproduction 389 at HERA, Eur. Phys. J. C 80 (2020) 1189, arXiv:2005.14471.

[10] ALICE collaboration, Coherent photoproduction of 0 vector mesons in ultra-peripheral Pb-Pb collisions at $\sqrt{\text{sNN}}$ = 5.02 TeV, JHEP 06 (2020) 035 [2002.10897].

Thank You

Di-Pions in Ultra-Peripheral Collisions at LHCb

back-up

Di-Pions in Ultra-Peripheral Collisions at LHCb

Alice p UPC in PbPb [10]

What is the Structure?

ALICE fitted an enhancement in this region with a Gaussian and obtained a mass of 1725 ± 17 MeV and a width of 143 ± 21 MeV compatible with the $\rho(1700)$ while STAR, with a similar fit, obtained a mass of 1653 ± 10 MeV and a width of 164 ± 15 MeV, compatible with the spin-3 ρ 3(1690).