

STRANGENESS STUDIES IN LHC^b **FIXED-TARGET** COLLISIONS

G

Α

Federica Fabiano on behalf of the LHCb Collaboration September, 23 2024

federica.fabiano@cern.ch

THE LHCD EXPERIMENT

- Single arm forward spectrometer originally devoted to heavy flavour physics, now a general purpose experiment with *unique* coverage $2 < \eta < 5$
- pp/pPb/PbPb and fixed-target modes available

Excellent vertexing, tracking down to very low p_T and **Particle Identification**

- \rightarrow momentum resolution of 0.5% 1.0% for 5-200 GeV/c
- \rightarrow high precision e, μ , π , K, p, γ PID

Large variety of possible measurements!

Federica Fabiano – September 23, 2024

FIXED-TARGET COLLISIONS AT LHCb

UNIQUE energy coverage at $\sqrt{s_{NN}} = 68.5-110$ GeV bridge between SPS and RHIC

Investigates the high-x of the nucleon target at intermediate Q^2 mostly unexplored by previous experiments

Federica Fabiano – September 23, 2024

SMOG: System for Measuring Overlap with Gas

- Noble gases (He, Ar, Ne) injected into the LHC beam pipe around the Interaction Point (IP), pressure ~ 10^{-7} mbar
- Can run simultaneously with the main collision mode
- Highest-energy fixed-target experiment ever built!

TODAY'S MENU

Fixed-Target collisions:

- LHCb-PAPER-2024-036, in preparation
- Λ^0 transverse polarization measurement in fixed-target pNe collisions at $\sqrt{s_{NN}}$ = 68.5 GeV at LHCb arXiv:2405.11324, accepted by JHEP
- Detached antiprotons in pHe at $\sqrt{s_{NN}} = 110$ GeV EPJ C83, 543 (2023)-036

Federica Fabiano – September 23, 2024

• Measurement of the ϕ meson production in fixed-target pNe collisions at $\sqrt{s_{NN}}$ = 68.5 GeV ()

[10²²]

(Pb) on target

proton

10-1

ϕ MESON PRODUCTION IN pNe COLLISIONS

Federica Fabiano – September 23, 2024

NOTVATION

• ϕ meson: $M_{\phi} = 1019.461 \pm 0.016 \text{ MeV/c}^2$

- \rightarrow lightest bound state of $s\bar{s}$
 - \rightarrow abundantly produced
 - \rightarrow good probe to study strangeness production
 - \rightarrow in larger systems (e.g. heavy-ion collisions), strangeness enhancement is a good signature of QGP

 \rightarrow in smaller systems (e.g. proton-nucleus), **Cold Nuclear Matter** effects produce effects similar to QGP

Federica Fabiano – September 23, 2024

Proton-nucleus collisions:

→ **baseline** for Quark-Gluon Plasma formation

 \rightarrow characterisation of CNM effects

ANALYSIS STRATEGY

First measurement of the ϕ production cross-section per nucleon in p_T , y * in pNe collisions at $\sqrt{s_{NN}}$ = 68.5 GeV

• **Observable**: $\frac{d^2\sigma(p_T, y^*)}{dp_T dy^*} = \frac{N^{\phi}(p_T, y^*) \zeta}{\mathscr{D} \operatorname{BR} \epsilon_{tot}(p_T, y^*) \Delta p_T \Delta y^* A_{Ne}} pp \text{ contamination factor}$ $\mathscr{L} = 21.7 \pm 1.4 \text{ nb}^{-1}$ $\epsilon_{tot}^{i} = \epsilon_{acc}^{i} \times \epsilon_{PV} \times \epsilon_{reco\&sel}^{i} \times \epsilon_{PID}^{i} \times \epsilon_{trig} / \epsilon_{match}$

- Total of **16560** ϕ candidates
- ϕ signal is extracted in p_T , y * regions

```
p<sub>T</sub> [MeV/c]: 800, 1050, 1200, 1350, 1550, 1850, 6500
              y * : -1.8, -1.3, -1.0, -0.7, 0
     Fixed-target kinematics covers the y^*
      central and negative emisphere only
  2.5 TeV proton beam implies a boost of \Delta y = 4.29
```

Federica Fabiano – September 23, 2024

LHCb-PAPER-2024-036, in preparation

Eur. Phys. J. C 83 (2023) 541

Eur. Phys. J. C 83 (2023) 541

ANALYSIS STRATEGY

Observable:
$$\frac{d^{2}\sigma(p_{T}, y^{*})}{dp_{T} dy^{*}} = \frac{N^{\phi}(p_{T}, y^{*}) \zeta}{\mathscr{L} BR \epsilon_{tot}(p_{T}, y^{*})} \Delta p_{T} \Delta y}$$
• Total Efficiency: $\epsilon_{tot}^{i} = \epsilon_{acc}^{i} \times \epsilon_{PV}$
Geometrical acceptance

- Evaluated on multiplicity-weighted Monte Carlo with data corrections on PID, PV and tracking -> simulated sample with *Pythia+EPOS-LHC* event generators Phys. Comm. 135 (2001) 238, Phys. Rev. C92 (2015) 034906
- Used to correct signal yields
- Mostly measured in each bin $i = (p_T, y^*)$

Federica Fabiano – September 23, 2024

• Total cross-section per nucleon evaluated by integrating over y_{tot}^* in [-1.8, 0] and $p_{T,tot}$ in [800, 6500] MeV/c

$$\sigma_{y, p_T}^{\phi} = 182.8 \pm 2.6 \text{ (stat)} =$$

Federica Fabiano – September 23, 2024

Double differential cross-section per nucleon:

\rightarrow Bars:

- statistical+uncorrelated
- uncertainties
- → Filled areas: correlated uncertainties
- compatible with rough extrapolation of LHC and RHIC results although in different collision systems and kinematic regions

 \pm 14.2 (syst) μ b/nucleon

Federica Fabiano – September 23, 2024

LHCb-PAPER-2024-036, in preparation

Λ^0 TRANSVERSE POLARIZATION IN pNe COLLISIONS

Federica Fabiano – September 23, 2024

NOTVATION

- **Transverse** Λ^0 **polarization:** discovered in 1976 in *p*Be collisions using 300 GeV unpolarized beam
- Polarization effects not expected in particle production from unpolarised beams at *high energy*

 \rightarrow Indicates that **spin effects** play an important role even in high energy collisions

- Common features observed up to now:
 - Polarization value increases with increasing x_F and p_T up to few GeV
 - Roughly independent of the beam energy and the atomic mass number of the colliding nuclei

Despite many theories and experiments performed, still not a clear explanation!

Federica Fabiano – September 23, 2024

 \rightarrow See <u>Youen Kang talk</u> for more details!

ANALYSIS STRATEGY

- Polarization measured in the 2017 pNe sample
- Decay protons preferentially emitted along the spin direction of the Λ in its rest frame

Measuring the asymmetry in the proton's angular distribution

 \rightarrow if present, would provide access to the Λ^0 polarization

$$\frac{dN}{d\Omega} = \frac{dN_0}{d\Omega} \left(1 + \alpha P_n^{\Lambda} \cos\theta\right)$$

 α parity-violating decay asymmetry for Λ^0

Federica Fabiano – September 23, 2024

Polarization extracted from the angular coefficient of the angular distribution

Federica Fabiano – September 23, 2024

Polarization obtained in kinematical range: \rightarrow 300 < p_T < 3000 MeV/c \rightarrow 2 < η < 5

 $P(\Lambda) = 0.029 \pm 0.019 \pm 0.012$

 $P(\bar{\Lambda}) = 0.003 \pm 0.023 \pm 0.014$

Polarization studied as a function of

(b) η (a) p_T (c) y (d) x_F

Error bars convolution of statistical and systematic uncertainties

403 (1994) Phys. Rev. D 40, 3557 (1989) Phys. Rev. D 91, 032004 (2015)

Federica Fabiano – September 23, 2024

• Λ^0 polarization vs x_F

→ Comparison with results from other experiments in different kinematical regions and collision systems

- Very good agreement in the polarization
- Results in a poorly explored kinematic region!

DETACHED ANTIPROTONS IN pHe COLLISIONS

Federica Fabiano – September 23, 2024

MOTIVATION AND ANALYSIS STRATEGY

- ▶ *p*He @ 110 GeV ($\mathscr{L} \sim 0.5 \text{ nb}^{-1}$) mimic CR-interstellar medium collisions at energy scale relevant for AMS-02 measurements of antimatter in space (and dark matter?)
- Prompt p̄ measurement already constrained models of secondary cosmic \bar{p} prl 121 (2018) 222001
- Measurements now extended to antiprotons produced by antihyperons decays

Federica Fabiano – September 23, 2024

 \rightarrow **Exclusive** measurement of the dominant contribution

$$\bar{\Lambda} \to \bar{p}\pi^+$$

FIXED-TARGET PHYSICS AT LHCb: SMOG2

Federica Fabiano – September 23, 2024

SMOG2

- SMOG2: gas confined in a 20 cm long storage cell
- Higher areal density than SMOG (luminosity increased up to $\sim x 100$)
- ► Wider choice of gases to be injected: He, Ne, Ar, H₂, D₂, N₂, O₂, Kr, Xe
- Simultaneous beam-beam beam-gas data-taking

Federica Fabiano – September 23, 2024

arXiv:2407.14200, in print on Physics Review Accelerators and Beams

- Possibility to improve the fixed-target analyses:

 \rightarrow See <u>SMOG2</u> poster and Oscar Boente Garcia's talk for more

HP2024

CONCLUSIONS

- Most recent strange production results from Run2 fixed-target data in LHCb!
- Measurement with the fixed-target system helps understanding the long-standing challenge of the transverse Λ *polarization* explanation
- of antimatter production in space
- Many more unique results will come with SMOG2 data!

Federica Fabiano – September 23, 2024

New measurement of the ϕ meson *production* in fixed-target *p*Ne collisions at $\sqrt{s_{NN}}$ = 68.5 GeV

Measurement of detached-to-prompt p
p
p
p
p
p
p
oduction in pHe collisions gives crucial inputs to models

tay lunec

Federica Fabiano – September 23, 2024

BACKUP

SYSTEMATIC UNCERTAINTIES

Summary of all contributions to the systematic uncertainties

Systematic uncertainties	
Uncorrelated among kinematic regions	
Signal determination	(<0.1-5.0)%
Geometrical acceptance	(<0.1-1.8)%
Multiplicity corrections	(0.2 - 3.6)%
PID efficiency	(2.3 - 4.4)%

Correlated among kinematic regions	
1.2%	
3.2%	
2.0%	
1.0%	
6.5%	

Federica Fabiano – September 23, 2024

LHCb-PAPER-2024-036, in preparation

- Signal extraction with alternative modelling
- Limited size of the MC sample
- Alternative MC weighting with number of tracks
- Limited size of the **PID efficiency** sample

- Accounts for tracking reconstruction within LHCb and for kaons interactions with detector material
- Uncertainty on the ghost factor due to *pp* contamination
- **Luminosity** evaluated from the $p e^{-}$ scattering:

 $\mathscr{L} = 21.7 \pm 1.4 \text{ nb}^{-1}$

