

Top quark pair production in Heavy Ion Collisions with the ATLAS experiment

Patrycja Potępa

for the ATLAS Collaboration

Outline

Observation of $t\bar{t}$ production in lepton+jets and dilepton channels in *p*+Pb collisions

arXiv:2405.05078

2 Measurement

3 Results

Poster by **P. Potepa**

Nuclear PDFs

- Top quarks provide novel probes of nuclear modifications to parton distribution functions (nPDF).
- World data constraining nPDFs are shown on the (x, Q^2) plane.
- Recent ATLAS measurements cover a large phase-space region:
 - UPC dijets 5.02 TeV (arXiv:2409.11060),
 - dijets 8.16 TeV p+Pb (PRL 132 (2024) 102301),
 - *t*t **8.16 TeV** *p*+Pb (arXiv:2405.05078).

Patrycja Potępa

Gluon PDF

- The gluon nPDF is important for perturbative calculations in QCD at LHC energies.
- Large uncertainties for gluon nPDFs at high Bjorken-x values.
- Top quarks are sensitive to gluon nPDFs in the high Bjorken-x region.
- An enhancement in tt production is expected compared to pp collisions.

Top-quark pair production

- The top-quark pair (*tī*) production is studied in *p*+Pb collisions.
- The tt cross section is measured in the combined *l*+jets and dilepton channel.
- The first measurement of the **nuclear modification factor** R_{pA} for the $t\bar{t}$ process.
- Measurements by CMS: p+Pb (PRL 119, 242001 (2017)), Pb+Pb (PRL 125, 222001 (2020)).

p+Pb data in ATLAS

- p+Pb data at $\sqrt{s_{NN}} = 8.16$ TeV collected in 2016 by ATLAS.
- The luminosity of **165 nb⁻¹**, split into **57 nb⁻¹** (*p*+Pb) and **108 nb⁻¹** (Pb+*p*).
- Final luminosity calibration with a relative uncertainty of 2.4%.

Event display of a p+Pb collision containing a $t\bar{t}$ candidate.

MC simulation

- MC samples produced using Powheg+Pythia 8 and Sherpa generators.
- Two isospin configurations: proton-proton (pp), proton-neutron (pn).
- Two beam configurations: proton-lead (p+Pb), lead-proton (Pb+p).
- Events embedded into real p+Pb data forming overlay samples.
 - Signal: $t\bar{t}$, Background: single top, W, Z, diboson.

Event selection

e+jets

- 1 electron,
- 0 muons,
- at least 4 jets.

ℓ +jets μ +jets

- 1 muon,
- 0 electrons,
- at least 4 jets.

Dilepton

ee

- 2 electrons,
- 0 muons,
- opposite sign leptons,
- $m_{\ell\ell} > 45 \text{ GeV}$ and $m_{\ell\ell} \notin (80-100) \text{ GeV}$,
- at least 2 jets.

$\mu\mu$

- 2 muons,
- 0 electrons,
- opposite sign leptons,
- *m*_{ℓℓ} > 45 GeV and *m*_{ℓℓ} ∉ (80-100) GeV,
- at least 2 jets.

$oldsymbol{ heta}\mu$

- 1 electron,
- 1 muon,
- opposite sign leptons,
- *m*_{ℓℓ} > 15 GeV,
- at least 2 jets.

Background

- Single top,
- W+jets,
 - W+b,
 - *W*+*c*,
 - W+light,
- Z+jets,
 - Z+b,
 - *Z*+*c*,
 - Z+light,
- Diboson,
- Fake lepton.

Lepton reconstruction

- Electrons must have p_T > 18 GeV and |η| < 2.47, pass Medium identification and be isolated.
- Muons must have $p_{T} > 18 \text{ GeV}$ and $|\eta| < 2.5$, pass Medium requirements and be isolated.
- Low-pileup egamma calibration and dedicated electron and muon scale factors are applied (EGAM-2022-01).

Fake-lepton background is estimated from data using the matrix-method technique.

e+jets

dilepton

Jet reconstruction

- Jets are required to have $p_{\rm T} > 20 \text{ GeV} \text{ and } |\eta| < 2.5.$
- Jets are reconstructed using the anti- k_t algorithm with jet radius of R = 0.4.
- Jet calibration uses simulation and in-situ measurements of the absolute energy scale (JETM-2023-001).
- Jets with *b*-hadrons are tagged using the 85% efficiency working point of the DL1r algorithm (EPJ C 79 (2019) 970).

Mean jet response

Jet p_T resolution

JETM-2023-001

Signal regions

Signal regions are defined using $H_{\rm T}^{\ell,j}$ distributions.

• $H_{T}^{\ell,j}$ is the scalar sum of lepton and jet $p_{\rm T}$.

Da

30

1.2

0.

Data

Six signal regions:

- 1ℓ1*b e*+jets,
- 1/2bincl e+jets,
- $1\ell 1b \mu$ +jets,
- $1\ell 2b$ incl μ +jets, •
- 2ℓ1*b*,
- $2\ell 2b$ incl. •

dilepton

Fitting procedure

- Signal strength definition: $\mu_{t\bar{t}} = \sigma_{t\bar{t}}^{\text{measured}} / \sigma_{t\bar{t}}^{\text{theory}}.$
- $\mu_{t\bar{t}}$ is determined by a **profile-likelihood fit** to $H_{T}^{\ell,j}$ data distributions.
- ★ The highest signal statistics in the ℓ+jets regions with ≥2 *b*-jets.
- The cleanest signal region in the dilepton channel with $\geq 2 b$ -jets.

Systematic uncertainties

- Main systematic uncertainties: jet energy scale, signal modelling.
- The total systematic uncertainty: 8%.

Source	$\Delta \sigma_{t\bar{t}} / \sigma_{t\bar{t}}$	
	unc. up [%]	unc. down [%]
Jet energy scale	+4.6	-4.1
<i>tī</i> generator	+4.5	-4.0
Fake-lepton background	+3.1	-2.8
Background	+3.1	-2.6
Luminosity	+2.8	-2.5
Muon uncertainties	+2.3	-2.0
<i>W</i> +jets	+2.2	-2.0
b-tagging	+2.1	-1.9
Electron uncertainties	+1.8	-1.5
MC statistical uncertainties	+1.1	-1.0
Jet energy resolution	+0.4	-0.4
tī PDF	+0.1	-0.1
Systematic uncertainty	+8.3	-7.6

Cross-section measurement

Signal strength is translated to the cross section:

$$\sigma_{t\bar{t}} = \mu_{t\bar{t}} \cdot \mathbf{A}_{Pb} \cdot \sigma_{t\bar{t}}^{th}.$$

Measured
$$t\bar{t}$$
 cross section:
 $\sigma_{t\bar{t}} = 58.1 \pm 2.0 \text{ (stat.)} ^{+4.8}_{-4.4} \text{ (syst.) nb.}$

- The first observation of *tt* production in the **dilepton channel** in p+Pb collisions.
- The total uncertainty amounts to **9%**, the most precise $t\bar{t}$ measurement in heavy-ion collisions.

Comparison to theory and other measurements

- Consistent with the CMS result in p+Pb collisions (PRL 119, 242001 (2017)).
- Consistent with the cross section in *pp* **collisions** (JHEP 07 (2023) 213), scaled by $A_{Pb} = 208$ and extrapolated to $\sqrt{s} = 8.16$ TeV.
- Good agreement with NNLO+nPDFs predictions.

Nuclear modification factor

$$R_{p\mathrm{A}} = rac{\sigma_{t\bar{t}}^{p+\mathrm{Pb}}}{A_{\mathrm{Pb}} \cdot \sigma_{t\bar{t}}^{pp}}$$

- Measured nuclear modification factor: $R_{pA} = 1.090 \pm 0.039 \text{ (stat.)} ^{+0.094}_{-0.087} \text{ (syst.)}.$
- The largest difference for the nNNPDF30 prediction.

Summary

Observation of $t\bar{t}$ production in lepton+jets and dilepton channels in *p*+Pb collisions

- Measured $t\bar{t}$ cross section: $\sigma_{t\bar{t}} = 58.1 \pm 2.0 \text{ (stat.)} {}^{+4.8}_{-4.4} \text{ (syst.) nb.}$
- Measured nuclear modification factor: $R_{pA} = 1.090 \pm 0.039 \text{ (stat.)} \stackrel{+0.094}{_{-0.087}} \text{ (syst.)}.$
- The first tt observation in the dilepton channel in p+Pb collisions at the LHC.
- The most precise tt cross-section measurement in heavy-ion collisions.

