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Jet quenching in the glasma stage 
of heavy-ion collisions 
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see the talks by J. Bahder (Tue), T. Luo (Wed), R. Fries (Wed), X. Mayo (Wed), C. Salgado (Wed), J. Silva (Wed)
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Momentum broadening in glasma
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A. Ipp, D. I. Müller, D. Schuh, PRD, 2020 
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**K. Boguslavski et al., PLB, 2024

K. Boguslavski et al., PRD, 2024
• !𝑞 is hard to access experimentally, but it provides an important measure 

for phenomenological estimates;

• Simulations, see e.g. JETSCAPE (PRC, 2021), suggest that a typical value 
for the QGP at 𝐓 = 𝟐𝟎𝟎	𝐌𝐞𝐕 is +𝐪 = 𝟎. 𝟏𝟐	𝐆𝐞𝐕𝟐/𝐟𝐦;

• The glasma phase was assumed less relevant, but the recent works* 
indicate that +𝐪 ≥ 𝟓	𝐆𝐞𝐕𝟐/𝐟𝐦 during the first 𝟎. 𝟑	𝐟𝐦/𝐜;

• Moreover, the simulations of the non-equilibrium dynamics within kinetic 
theory** show continuity of +𝐪 consistent with these glasma phase 
values;

see the talks by F.  Lindenbauer (Mon), S. Barrera (Mon), C. Lamas (Mon), D. Avramescu (Tue)
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energy loss is not solely defined by !q
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David Müller, thesis (arxiv), 2019
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J. Barata, S. Hauksson, X. Mayo López, AS, arxiv, 2024
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Broadening (BDMPS-Z style)
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Broadening (BDMPS-Z style)
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• Within each tube parton momentum grows linearly with time/path;

• At the edge of the next tube, the interference takes over, and the 
process restarts;

• Averaging over the position in the first tube, we get a smoothed physical 
result within our model;

• And now, we also have some insight into how the gluon radiation should 
behave;

J. Barata, S. Hauksson, X. Mayo López, AS, arxiv, 2024
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Gluon emission (BDMPS-Z style)
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The case of U(1) fields (single tube)
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The case of U(1) fields (multiple tubes)
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• Notice the destructive interference at the edges and the growth within each tube; 
• Upon averaging over the initial position, the series of minima and peaks is smeared -- 

the rate is similar to the constant field case;
• The greater the number of tubes, the lower the averaged rate (the curves are ordered);
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The case of SU(2) fields (multiple tubes)

0 1 2 3 4 5 6
0.0

0.4

0.8

1.2

1.6

0 1 2 3
0

0.4

0.8

1.2

1.6

0.2 0.4 0.6 0.8 1.0
0.5

1.0

2.0

3.0

4.0

• The same destructive interference pattern with somewhat faster growth; 
• Upon averaging over the initial position, the series of minima and peaks is smeared;
• The greater the number of tubes, the lower the averaged rate (the curves are ordered);
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The case of U(1) fields

• Sufficiently weak dependence on the tube size at fixed !𝑞;
• The synchrotron-like scaling continues into the region with BDMPS-Z-like behavior;
• Should the harder scatterings be added explicitly?
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Summary
• The rate cannot be obtained solely from !q for a generic profile;

• We have developed a (simple) flexible formalism to describe jet quenching in IS of HIC;

• For the rate we find an intricate interplay of several regimes:

o When a single flux tube is longer than the formation time (very soft gluons), the rate reproduces 
the form of synchrotron radiation in a constant field

o At higher energies, the partons traverse multiple tubes during the emission process, and the 
rate decreases

o The rate scales 𝜔!"/$ for lower energies, resembling the constant field case, for the transition 
region it has a BDMPS-Z like behavior scaling as  𝜔!"/%, and when the formation time is larger 
than 𝑡 the rate continues into 𝜔!% tail of the harmonic approximation (lack of harder scatterings)
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