Photonuclear Dijet Production in Ultra-Peripheral Pb+Pb Collisions at 5.02 TeV with the ATLAS Detector

Ben Gilbert On behalf of the ATLAS Collaboration ATLAS-HION-2022-15 (arXiv:2409.11060)

ATLAS-HION-2022-15

ATLAS-HION-2022-15

ATLAS-HION-2022-15

Hard Probes 2024, September 22-27, Nagasaki, Japan

4

ATLAS-HION-2022-15

ATLAS-HION-2022-15

ATLAS-HION-2022-15

ATLAS-HION-2022-15

ATLAS-HION-2022-15

ATLAS-HION-2022-15

Gap Selections and Photon Structure

- Template fit studies of $\sum_{\gamma} \Delta \eta$ provide two pieces of information:
 - The efficacy and background contamination rates for different gap selections
 - The relative proportion of direct and resolved photon events

Gap Selections and Photon Structure

• The selection we apply (red) retains a sufficient level of signal purity.

ATLAS-HION-2022-15

Gap Selections and Photon Structure

Fractior

Direct

0.6

0.5

0.4F

ATLAS

Pb+Pb 5.02 TeV, 1.72 nb⁻¹

 \diamond

 \diamond

8

 $30.0 < H_{\tau} < 35.0 \text{ GeV}$

0

٥

٥

UPC γ +A \rightarrow jets 45.3 < H_{τ} < 58.6 GeV

- The selection we apply (red) retains a sufficient level of signal purity.
- The direct fraction differs between data and theory at low H_T but is well-modeled at high H_T .

Measuring Nuclear Breakup

The photonuclear jet requirements select events with very highenergy photons.

- $E_{\gamma} \propto 1/b \rightarrow$ Biases towards lower impact parameter collisions
- Much higher probability of breakup of the photon-emitting nucleus due to additional EM interactions

ATLAS-HION-2022-15

Measuring Nuclear Breakup

The photonuclear jet requirements select events with very highenergy photons.

- $E_{\gamma} \propto 1/b \rightarrow$ Biases towards lower impact parameter collisions
- Much higher probability of breakup of the photon-emitting nucleus due to additional EM interactions

ATLAS-HION-2022-15

Measuring Nuclear Breakup

The photonuclear jet requirements select events with very highenergy photons.

- $E_{\gamma} \propto 1/b \rightarrow$ Biases towards lower impact parameter collisions
- Much higher probability of breakup of the photon-emitting nucleus due to additional EM interactions

This <u>measured correction</u> for breakup is used to compare theory to data.

Measurements of the breakup rate in XnXn and OnXn events show that about <u>50%</u> of photonuclear jet production breaks up!

Theoretical modeling predicts the rate well but misses slightly at large z_{γ} . (arXiv:2404.09731)

ATLAS-HION-2022-15

Systematic Uncertainties

Systematic uncertainties are the key limiting factor in our sensitivity to nuclear PDFs. The jet energy scale and resolution uncertainties are typically 5-10%. These uncertainties are <u>highly</u> <u>correlated</u> between bins. Systematic uncertainties are also evaluated on the unfolding and event selections. These uncertainties are treated as un-correlated.

ATLAS-HION-2022-15

UPC Dijets: Scanning in Photon Energy

The x_A distribution has substantial acceptance

Selecting on photon energy removes this bias, allowing a more direct measurement of nPDFs.

ATLAS-HION-2022-15

UPC Dijets: Scanning in Photon Energy

ATLAS-HION-2022-15

- At lower photon energies, we can access higher-x partons.
- Systematic uncertainties are typically <5% in these bins after subtracting the correlated "scale" uncertainty.

ATLAS-HION-2022-15

- At intermediate photon energies, we begin to access the lower-x shadowing region.
- Systematic uncertainties are typically ~5% in these bins after subtracting the correlated "scale" uncertainty.

10¹⁰

107

 10^{4}

10

ATLAS

Pb+Pb 5.02 TeV, 1.72 nb⁻¹

 $0.0079 < z_{\gamma} < 0.015$

[ub/GeV]

dzγ

dx_A dx^3∂

Hard Probes 2024, September 22-27, Nagasaki, Japan

UPC γ + A \rightarrow jets

anti- $k_{\rm t}$ R=0.4 Jets

 $0.9H_{\tau} < m_{iets} < 4H_{\tau}$

- The highest photon energies allow access the shadowing region.
- Systematic uncertainties are typically ~5% in these bins after subtracting the correlated "scale" uncertainty.
 - The lowest- H_T bin is more challenging to constrain here.

- Integrating over photon energy provides the benefit of allowing the measurement over a broad range in x_A .
- In these bins, the uncertainty is typically ~5% after removing the scale uncertainty.

ATLAS-HION-2022-15

Comparing Across nPDFs

- This data can add a wide range of kinematic coverage to existing nPDF constraints.
 - All nPDF models have <u>excess anti-shadowing</u>, while nCTEQ15 WZ+SIH and TUJU21 agree with the shadowing observed in data at low H_T .
 - The full data tables allow for a complete treatment of <u>correlated uncertainties</u>, which will constrain nPDF effects even further.

ATLAS-HION-2022-15

Conclusions

- This data can add a wide range of kinematic coverage to existing nPDF constraints.
 - All nPDF models have <u>excess anti-shadowing</u>, while nCTEQ15 WZ+SIH and TUJU21 agree with the shadowing observed in data at low H_T .
 - The full data tables allow for a complete treatment of <u>correlated uncertainties</u>, which will constrain nPDF effects even further.
- Photonuclear jet production was measured by ATLAS in 5.02 TeV Pb+Pb collisions with 2018 data.
 - This measurement extends to the <u>lowest in jet p_T of any</u> <u>ATLAS measurement</u> while maintaining systematic control.
 - This coverage is possible through a <u>dedicated jet</u> <u>calibration</u> produced specifically for jets in UPC.

Figure inspired by <u>arXiv:2112.12462</u>

Conclusions

- This data can add a wide range of kinematic coverage to existing nPDF constraints.
 - All nPDF models have <u>excess anti-shadowing</u>, while nCTEQ15 WZ+SIH and TUJU21 agree with the shadowing observed in data at low H_T .
 - The full data tables allow for a complete treatment of <u>correlated uncertainties</u>, which will constrain nPDF effects even further.
- Photonuclear jet production was measured by ATLAS in 5.02 TeV Pb+Pb collisions with 2018 data.
 - This measurement extends to the <u>lowest in jet p_T of any</u> <u>ATLAS measurement</u> while maintaining systematic control.
 - This coverage is possible through a <u>dedicated jet</u> <u>calibration</u> produced specifically for jets in UPC.

These results are closely related to the early physics goals of the EIC!

ATLAS-HION-2022-15

Backup

ATLAS-HION-2022-15

Jet Performance in MC

- The closure of the jet energy scale in MC is excellent, with <0.5% non-closures over the majority of the detector.
 - The closure performs slightly worse and the resolution is larger in the 3.2-3.5 region.
 - This region corresponds to a transition in the ATLAS calorimeter.
- The shape of the JER at very low p_T arises from particle flow within the inner detector acceptance.

Jet Performance in Data

- The jet response in data is constrained through two studies:
 - Z+jet balance to constrain the absolute energy scale at mid-rapidity
 - Dijet balance to constrain the relative energy scale between regions of the detector
- Uncertainties are also assessed due to jet flavor composition and response.

 $R_{\mathsf{Data/MC}}$

1.02

0.98

0.96

0.94

0.92

ATLAS

 $pp \rightarrow Z$ +jets

√s=13 TeV, 334 pb⁻¹

Data

Stat. Uncert

High- μ Result

Smoothed

Total Uncert.

ATLAS-HION-2022-15

Nucleus-Going Gap Requirements

 Nucleus-going gap selections are also tuned to remove backgrounds from "reverse" events and photo-diffractive jet production.

Fractior

Background

0.04

0.03

0.02

0.01

0.06 ATLAS

0.05 UPC γ +A \rightarrow jets

• ∆n

 Δn

< 2.5

< 3.0

< 3.5

Pb+Pb 5.02 TeV, 1.72 nb⁻¹

Hard Probes 2024, September 22-27, Nagasaki, Japan

Zγ

Event

 $N_{\text{jet}} \ge 2$

ZDC 0nXn: $E_{0n} < 1$ TeV and $E_{Xn} > 1$ TeV

Jet

 $p_{\rm T}^{\rm jet}$ > 15 GeV

 $|\eta^{\rm jet}| < 4.4$

Acceptance and Observables

ATLAS-HION-2022-15

Data-MC Comparisons

$$m_{\text{jets}} \equiv \left[\left(\sum_{i} E_{i} \right)^{2} - \left| \sum_{i} \vec{p}_{i} \right|^{2} \right]^{1/2}$$

$$y_{\text{jets}} \equiv \frac{1}{2} \ln \left(\frac{\sum_{i} E_{i} + \sum_{i} p_{z_{i}}^{*}}{\sum_{i} E_{i} - \sum_{i} p_{z_{i}}^{*}} \right)$$

Jet	Event
$p_{\rm T}^{\rm jet} > 15 {\rm GeV}$	ZDC $0nXn$: $E_{0n} < 1$ TeV and $E_{Xn} > 1$ TeV
$ \eta^{\hat{j}et} < 4.4$	$N_{\rm jet} \ge 2$
	$0.9H_{\rm T} < m_{\rm jets} < 4H_{\rm T}$
	$\sum_{\gamma} \Delta \eta > 2.5, \Delta \eta_A < 3, \text{ and } \sum \Delta \eta < 9$

ATLAS-HION-2022-15

The Measured Photon Flux

- The distribution of z_{γ} values for large x_A in bins of H_T (right) demonstrates the measured photon flux.
 - Disagreements appear to arise at low z_{γ} and low H_T , which could arise due to:
 - Photon flux modeling
 - NLO corrections the LO+PS Pythia calculation

ATLAS-HION-2022-15

Correlated Uncertainties and nPDF Effects

 Correlated systematic uncertainties are treated in the following figures are represented by separating out the "scale" fully correlated across all points.

ATLAS-HION-2022-15

- For a given slice in x_A , the dependence on H_T can help to:
 - Separate correlated systematic uncertainties
 - Understand the variation of nPDF modification with Q^2

ATLAS-HION-2022-15

- For a given slice in x_A , the dependence on H_T can help to:
 - Separate correlated systematic uncertainties
 - Understand the variation of nPDF modification with Q^2

ATLAS-HION-2022-15

- For a given slice in x_A , the dependence on H_T can help to:
 - Separate correlated systematic uncertainties
 - Understand the variation of nPDF modification with Q^2

ATLAS-HION-2022-15

- For a given slice in x_A , the dependence on H_T can help to:
 - Separate correlated systematic uncertainties
 - Understand the variation of nPDF modification with Q^2

ATLAS-HION-2022-15

- For a given slice in x_A , the dependence on H_T can help to:
 - Separate correlated systematic uncertainties
 - Understand the variation of nPDF modification with Q^2

ATLAS-HION-2022-15

Jet System Kinematics

- Unfolded jet cross-sections are also produced in a different variable set, in terms of the jet system kinematics.
- Results are broadly consistent with the hardscattering kinematics.
- At low H_T , the cross-section is over-predicted in the nucleus-going direction but quite consistent in the photon-going direction.

ATLAS-HION-2022-15

Jet System Kinematics

- Unfolded jet cross-sections are also produced in a different variable set, in terms of the jet system kinematics.
- Results are broadly consistent with the hard-scattering kinematics.
- At low H_T , the cross-section is over-predicted in the nucleus-going direction but quite consistent in the photon-going direction.
- The mass-dependence demonstrates that inconsistencies are concentrated at small mass, but the higher-mass bins are well-predicted.

ATLAS-HION-2022-15

Bin Acceptance

- Bins are only reported > if the measurement acceptance is high enough in that region.
- The acceptance is limited due to the mapping of single-jet selections onto the 3D phase space.
- Selection effects also shift bin means, which we account for.

ATLAS-HION-2022-15

nPDF Comparisons

- The approach of each nPDF fit to describing the data is different, making it difficult to ascribe differences to only the datasets included:
 - nCTEQ and TUJU fit the nPDF independent of the free proton PDF. TUJU restricts to NNLO calculations.
 - EPPS directly fits the modification relative to CT18A.
 - nNNPDF fits using a neural network approach.

ATLAS-HION-2022-15