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In ultra-relativistic heavy ion 
collisions, the intense 
electromagnetic fields provide 
an intense flux of nearly real 
photons.
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Emitted photons may strike a 
parton in the other nucleus.
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In ultra-relativistic heavy ion 
collisions, the intense 
electromagnetic fields provide 
an intense flux of nearly real 
photons.
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Emitted photons may strike a 
parton in the other nucleus.

“Direct” photons 
participate in the hard-
scattering process.

“Resolved” photons 
scatter through a virtual 
hadronic excitation of 
the photon.
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Figure inspired by arXiv:2112.12462

Photonuclear jet measurements 
can access the nPDFs of struck 
ions in a kinematic region with 
little available data.

Jets provide access to the full 
hard-scattering kinematics!

https://arxiv.org/abs/2112.12462
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We require two jets 
with 𝑝𝑇 > 15 GeV
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∆η > 2.5∆η𝐴< 3
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∆η > 2.5∆η𝐴 > 2.5
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• Template fit studies of σ𝛾 ∆η provide two pieces of information:

• The efficacy and background contamination rates for different gap selections
• The relative proportion of direct and resolved photon events

ATLAS-HION-2022-15

𝑧𝛾 =
𝑀𝑗𝑒𝑡𝑠𝑒+𝑦𝑗𝑒𝑡𝑠

𝑠𝑁𝑁



Gap Selections and Photon Structure

12Hard Probes 2024, September 22-27, Nagasaki, Japan

• The selection we apply (red) retains a 
sufficient level of signal purity.

ATLAS-HION-2022-15
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• The selection we apply (red) retains a 
sufficient level of signal purity.

•  The direct fraction differs between data 
and theory at low 𝐻𝑇  but is well-modeled 
at high 𝐻𝑇 .
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𝑏 ≫ 2𝑅𝐴

The photonuclear jet requirements select events with very high-
energy photons.

• 𝐸𝛾 ∝ 1/𝑏 → Biases towards lower impact parameter collisions

• Much higher probability of breakup of the photon-emitting 
nucleus due to additional EM interactions
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Measurements of the breakup 
rate in XnXn and 0nXn events 
show that about 50% of photo-
nuclear jet production breaks up!

arXiv:2404.09731

Theoretical modeling predicts 
the rate well but misses slightly 
at large 𝑧𝛾. (arXiv:2404.09731)

This measured correction for breakup is used to 
compare theory to data.
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𝑏 ≈ 2𝑅𝐴

The photonuclear jet requirements select events with very high-
energy photons.

• 𝐸𝛾 ∝ 1/𝑏 → Biases towards lower impact parameter collisions

• Much higher probability of breakup of the photon-emitting 
nucleus due to additional EM interactions

https://arxiv.org/abs/2404.09731
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Systematic uncertainties are 
the key limiting factor in our 
sensitivity to nuclear PDFs.

The jet energy scale and resolution 
uncertainties are typically 5-10%. 
These uncertainties are highly 
correlated between bins.

Systematic uncertainties are also 
evaluated on the unfolding and 
event selections. These uncertainties 
are treated as un-correlated.

Hard Probes 2024, September 22-27, Nagasaki, JapanATLAS-HION-2022-15
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The 𝑥𝐴 distribution has substantial acceptance 
effects in 𝑧𝛾.

Selecting on photon energy removes this bias, 
allowing a more direct measurement of nPDFs.
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The 𝑥𝐴 distribution has substantial acceptance 
effects in 𝑧𝛾.

Selecting on photon energy removes this bias, 
allowing a more direct measurement of nPDFs.
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Photon Energy
0.004 < 𝑧𝛾 < 0.008

• At lower photon energies, we can access higher-x partons.
• Systematic uncertainties are typically <5% in these bins after 

subtracting the correlated “scale” uncertainty.

Hard Probes 2024, September 22-27, Nagasaki, JapanATLAS-HION-2022-15
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• At intermediate photon energies, we begin to access the lower-x 
shadowing region.

• Systematic uncertainties are typically ~5% in these bins after 
subtracting the correlated “scale” uncertainty.

Hard Probes 2024, September 22-27, Nagasaki, Japan

Photon Energy
0.008 < 𝑧𝛾 < 0.015

ATLAS-HION-2022-15
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• The highest photon energies allow access the shadowing region.
• Systematic uncertainties are typically ~5% in these bins after 

subtracting the correlated “scale” uncertainty.
• The lowest-𝐻𝑇  bin is more challenging to constrain here.

Hard Probes 2024, September 22-27, Nagasaki, Japan

Photon Energy
0.015 < 𝑧𝛾 < 0.027

ATLAS-HION-2022-15
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• Integrating over photon energy provides the benefit of allowing 
the measurement over a broad range in 𝑥𝐴.

• In these bins, the uncertainty is typically ~5% after removing the 
scale uncertainty.

Hard Probes 2024, September 22-27, Nagasaki, JapanATLAS-HION-2022-15

Photon Energy
3.7 × 10−4 < 𝑧𝛾 < 0.027
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• This data can add a wide range of kinematic coverage to 
existing nPDF constraints.
• All nPDF models have excess anti-shadowing, while 

nCTEQ15 WZ+SIH and TUJU21 agree with the shadowing 
observed in data at low 𝐻𝑇.

• The full data tables allow for a complete treatment of 
correlated uncertainties, which will constrain nPDF 
effects even further.
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Figure inspired by arXiv:2112.12462

• This data can add a wide range of kinematic coverage to 
existing nPDF constraints.
• All nPDF models have excess anti-shadowing, while 

nCTEQ15 WZ+SIH and TUJU21 agree with the shadowing 
observed in data at low 𝐻𝑇.

• The full data tables allow for a complete treatment of 
correlated uncertainties, which will constrain nPDF 
effects even further.

• Photonuclear jet production was measured by ATLAS in 5.02 
TeV Pb+Pb collisions with 2018 data.
• This measurement extends to the lowest in jet 𝑝𝑇 of any 

ATLAS measurement while maintaining systematic 
control.
• This coverage is possible through a dedicated jet 

calibration produced specifically for jets in UPC.

https://arxiv.org/abs/2112.12462
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These results are closely related to 
the early physics goals of the EIC!
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Figure inspired by arXiv:2112.12462

• This data can add a wide range of kinematic coverage to 
existing nPDF constraints.
• All nPDF models have excess anti-shadowing, while 

nCTEQ15 WZ+SIH and TUJU21 agree with the shadowing 
observed in data at low 𝐻𝑇.

• The full data tables allow for a complete treatment of 
correlated uncertainties, which will constrain nPDF 
effects even further.

• Photonuclear jet production was measured by ATLAS in 5.02 
TeV Pb+Pb collisions with 2018 data.
• This measurement extends to the lowest in jet 𝑝𝑇 of any 

ATLAS measurement while maintaining systematic 
control.
• This coverage is possible through a dedicated jet 

calibration produced specifically for jets in UPC.

https://arxiv.org/abs/2112.12462
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• The closure of the jet energy scale in MC is excellent, with <0.5% non-closures over the majority of the detector.
• The closure performs slightly worse and the resolution is larger in the 3.2-3.5 region.

• This region corresponds to a transition in the ATLAS calorimeter.
• The shape of the JER at very low 𝑝𝑇 arises from particle flow within the inner detector acceptance.
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• The jet response in data is constrained through two studies:
• Z+jet balance to constrain the absolute energy scale at mid-rapidity
• Dijet balance to constrain the relative energy scale between regions 

of the detector
• Uncertainties are also assessed due to jet flavor composition and response.
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• Nucleus-going gap selections are also tuned to remove backgrounds from “reverse” 
events and photo-diffractive jet production. 
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Cross-sections are measured 
and unfolded in 𝐻𝑇, 𝑥𝐴, and 𝑧𝛾.
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The Measured Photon Flux
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• The distribution of 𝑧𝛾 values for large 𝑥𝐴 in bins of 𝐻𝑇  (right) 

demonstrates the measured photon flux.
• Disagreements appear to arise at low 𝑧𝛾 and low 𝐻𝑇, 

which could arise due to:
• Photon flux modeling
• NLO corrections the LO+PS Pythia calculation

Hard Probes 2024, September 22-27, Nagasaki, JapanATLAS-HION-2022-15



Correlated Uncertainties and nPDF Effects
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• Correlated systematic uncertainties are treated in the following figures are represented by separating out the 
“scale” fully correlated across all points. 

ATLAS-HION-2022-15



Cross-Sections vs. 𝐻𝑇
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• For a given slice in 𝑥𝐴, the dependence on 𝐻𝑇  can help to:
• Separate correlated systematic uncertainties
• Understand the variation of nPDF modification with 𝑄2
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• Separate correlated systematic uncertainties
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Jet System Kinematics
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• Unfolded jet cross-sections are also produced 
in a different variable set, in terms of the jet 
system kinematics.

• Results are broadly consistent with the hard-
scattering kinematics.

• At low 𝐻𝑇, the cross-section is over-predicted 
in the nucleus-going direction but quite 
consistent in the photon-going direction.
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• Unfolded jet cross-sections are also produced in a different variable 
set, in terms of the jet system kinematics.

• Results are broadly consistent with the hard-scattering kinematics.

• At low 𝐻𝑇, the cross-section is over-predicted in the nucleus-going 
direction but quite consistent in the photon-going direction.

• The mass-dependence demonstrates that inconsistencies are 
concentrated at small mass, but the higher-mass bins are well-
predicted.
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• Bins are only reported 
if the measurement 
acceptance is high 
enough in that region.

• The acceptance is 
limited due to the 
mapping of single-jet 
selections onto the 3D 
phase space.

• Selection effects also 
shift bin means, which 
we account for.
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• The approach of each nPDF fit to describing the data is different, making it difficult to ascribe differences to only the 
datasets included:
• nCTEQ and TUJU fit the nPDF independent of the free proton PDF. TUJU restricts to NNLO calculations.
• EPPS directly fits the modification relative to CT18A.
• nNNPDF fits using a neural network approach.
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