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Hydrodynamization in Heavy Ion Collisions
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Pre-Hydrodynamic Attractors

How can we describe early
out-of-equilibrium
pre-hydro?

QCD kinetic theory
Holography
Classical field simulations

“Attractor” behavior shown
for kinetic theory, AdS/CFT,
and Israel-Stewart theory

Kurkela, van der Schee, Wiedemann, Wu,

arXiv:1907.08101
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Scaling in Kinetic Theory

Distribution functions quickly take “scaling” form for most of
pre-equilibrium evolution:

f (p, τ) = ταw(τβp⊥, τγpz)
Berges, Boguslavski, Schlichting, Venugopalan arXiv:1303.5650

Follows distinct stages of
bottom-up
thermalization
Baier, Mueller, Schiff, Son

arXiv:hep-ph/0009237

w is time-independent
during scaling and acts
as an attractor

stage α β γ

free-streaming 0 0 1

”BMSS” −2
3 0 1

3

”dilute” −1 0 0

hydrodynamization 0 1
3

1
3
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Adiabatic Hydrodynamization Framework

Is there a generic way of
understanding why and in
what form attractors arise?

Idea: view attractors as the
time-dependent ground state
of an effective
“Hamiltonian”
Brewer, Yan, Yin, arXiv:1910.00021

Early-Time Dynamics

τα(τ)w(τβ(τ)p⊥, τγ(τ)pz , τ)

↓
Prescaling “Ground State”

ταS (τ)w(τβS (τ)p⊥, τγS (τ)pz)

Mazeliauskas, Berges, arXiv:1810.10554;

Mikheev, Mazeliauskas, Berges, arXiv:2203.02299

Rachel Steinhorst
A Unified Adiabatic Description of Hydrodynamization in Kinetic Theory 5



Adiabatic Hydrodynamization Framework

To do this, cast the Boltzmann equation

∂f
∂τ
− pz

τ

∂f
∂pz

= −C [f ],

in the form of a Schrödinger-like equation:

Hw ≡ −∂y w , where y ≡ log
(
τ

τ0

)
If H is ”sufficiently adiabatic”, excited state parts of w with
eigenvalue ε will decay as ∼ e−εy .
This eventually leaves w in the time dependent ground state
of H.
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Boltzmann Equation

For the kinetic theory of gluons in this work, we will assume:
Longitudinal expansion only: boost-invariance and no
transverse expansion
Elastic scatterings only: neglect the inelastic 1-to-2 part of
the collision kernel
Small-angle scatterings only

That is,

∂f
∂τ
− pz

τ

∂f
∂pz

= λ0lCb[f ]
(
Ia∇2

pf + Ib∇p · (p̂(f +��f 2))
)

where Ia =
∫

p f (1 + f ), Ib =
∫

p
2f
p , and λ0 = g4

s N2
c

4π .
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Adiabatic Hydrodynamization: An Exact Limit

Brewer, Scheihing-Hitschfeld, and Yin (BSY) showed that for a
simplified version of this theory,

∂f
∂τ
− pz

τ

∂f
∂pz

= λ0lCb[f ]
(
Ia∇2

pf +������Ib∇p · (p̂f )
)

it is possible to write f as

f (p⊥, pz , τ) = A(τ)w
( p⊥

B(τ) ,
pz

C(τ) , τ
)

= A(τ)w(ζ, ξ, τ)

such that the resulting H is time-independent with ground state

w = 1√
2π

e−(ζ2+ξ2)/2

Brewer, Scheihing-Hitschfeld, Yin, arXiv:2203.02427
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AH Scaling Exponents Match Full QCD EKT
The time-dependent rescalings which make H time-independent [1]
reproduce scaling exponents calculated from full QCD EKT [2]

[1] Brewer, Scheihing-Hitschfeld, Yin, arXiv:2203.02427

[2] Mazeliauskas, Berges, arXiv:1810.10554
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Adiabatic Hydrodynamization: Generalizing

If we reintroduce Ib, we no longer know an analytic solution to the
eigenvalue problem for H,

H =α + βζ∂ζ + (γ − 1)ξ∂ξ − q
[ 1

B2

(1
ζ
∂ζ + ∂2

ζ

)
+ 1

C2∂
2
ξ

]
− λ

p (2 + ζ∂ζ + ξ∂ξ)

However, if we expand f and H on a basis

ψi = Pi (ζ, ξ)e−(ξ2/2+ζ)

and take p ≈ p⊥, we can solve the system numerically (but this
will prevent us from solving until hydrodynamization).

Rachel Steinhorst
A Unified Adiabatic Description of Hydrodynamization in Kinetic Theory 10



Adiabatic Hydrodynamization: Generalizing
With A(y),B(y),C(y) as in the analytic solution, H is now
time-dependent, but quasi-adiabatic (dominated by a set of
low-energy modes):

Energies: Weights:

Rajagopal, Scheihing-Hitschfeld, RS, arXiv:2405.17545

An adiabatic interpretation for the reduction
of degrees of freedom still holds!
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Extending to Hydrodynamization

We want a basis expanded near the time-dependent ground
state of H at all times until hydrodynamization.
At early times (as in BSY), we can find C(y) such that the
ground state is near

w ∝ e−p2
z /2C2(y)

At late times, we know the system will equilibrate to

w ∝ e−p/T

Writing w ∝ e−p/D(y)e−u2r(y)2/2 with u ≡ pz/p will allow us
to smoothly interpolate between early and late time with a
prudent choice of r(y) and D(y).
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Choosing a Basis Near the Ground State

Therefore we write

f (p, pz , y) = A(y)w
( p

D(y) ,
pz
p , r(y), y

)
= A(y)w(χ, u, r , y)

and expand f and H on the basis

ψn,l = Pn,l (χ, u, r(y))e−χe−u2r(y)2/2

and make “reasonable” choices for A(y),D(y), r(y) both such that

ψ0,1 = P0,1(r)e−χe−u2r2/2

is somewhat near the ground state, and such that the system
evolves approximately adiabatically.
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Scaling Exponents: Weak Coupling (gs = 10−3)
At very weak couplings, we see “BMSS” and “dilute” fixed points,
characteristic of the first two stages of bottom-up.
(System evolution is too slow at this weak coupling to see hydrodynamization)
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Energy levels match analytic prediction from BSY:

εn,m = 2n(1− γ)− 2mβ

Brewer, Scheihing-Hitschfeld, Yin, arXiv:2203.02427
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Scaling Exponents: Stronger Coupling (gs = 1)

At somewhat stronger couplings, we can evolve the system until
hydrodynamization, and at late times a unique ground state
emerges!
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Conclusions

Casting a Boltzmann equation in the form of a
Schrödinger-like equation can provide an intuitive explanation
for attractors (adiabatic hydrodynamization).
In a simplified QCD kinetic theory, we can interpolate between
various known “fixed point” scaling regimes using a single
basis.
Between each stage of hydrodynamization, there is a loss of
memory as the set of low-energy states becomes smaller.
Next Steps:

Generalize Boltzmann equation: add 1-to-2 scatterings and
transverse expansion. (In progress: KR, BS, RS)
Use in Bayesian analysis of heavy ion collisons. (In progress:
G. Nijs, BS, RS)
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Supplemental: Anisotropy/Occupancy

Rajagopal, Scheihing-Hitschfeld, RS, arXiv:2405.17545
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Supplemental: Choosing an Adiabatic “Frame”

A(y) can be chosen to satisfy number conservation:
∂y A
A = 3∂y D

D − 1
We choose D(y) to decay towards 〈 2

p 〉, which at late times is
the effective temperature.
We would like ψ1,0 to approximately describe f as much as
possible.
Therefore, we choose r(y) such that if f ∝ ψ1,0, the evolution
equation of the 〈u2〉 moment will be exactly satisfied:∫

p
u2∂y f =

∫
p

(pz∂pz − C [f ])f
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Supplemental: “Translating” Scaling Exponents
Two notions of β(y), γ(y).

Physical scaling from moments:

β〈p2
T 〉

= −1
2∂y ln〈p2

⊥〉 ,

γ〈p2
z 〉 = −1

2∂y ln〈p2
z 〉 ,

α〈f 〉 = ∂y ln〈f 〉
Scaling from choice of A(y),D(y),R(y):

β1 ≡ −
1
2∂y ln〈p2

⊥〉1 = −1
2∂y ln

(
D2 − D2J2(r)

J0(r)

)
,

γ1 ≡ −
1
2∂y ln〈p2

z 〉1 = −1
2∂y ln D2J2(r)

J0(r) ,

α1 ≡ ∂y ln〈f1〉1 = −1− ∂y ln D3J0(r)2

J0(
√

2r)
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