A new class of ultra-peripheral collisions in ALICE: Inelastic photonuclear interactions and open charm photoproduction

Sigurd Nese (University of Oslo) For the ALICE collaboration

> Hard Probes 2024 Nagasaki, Japan 25. September 2024

In ultra-peripheral heavy-ion collisions, electromagnetic interactions dominate

- ullet Impact parameter is greater than the sum of the radii \rightarrow strong interactions suppressed
- $\bullet\,$ Heavy nuclei are sources of strong EM fields $\rightarrow\,$ equivalent flux of photons

Heavy quarks are produced in inelastic photonuclear interactions

- Photon can interact in direct or anomalous process
- Can result in photoproduction of charm quarks, emerging as open- or hidden-charm hadrons
- The QCD scale is given by $Q^2 = 4(m_Q^2 + p_T^2) \rightarrow pQCD$ calculations are applicable down to $p_T = 0$.
- One gluon interacts
 - \rightarrow one factor of gluon PDF
- Measuring charm hadrons gives access to gluon PDF down to $x \lesssim 10^{-4} \to \,$ probe saturation, shadowing

• Theoretical calculation: $\sigma(Pb + Pb \rightarrow Pb + c\overline{c} + X) \approx 2b$

Spencer R. Klein, Joakim Nystrand, and Ramona Vogt. "Heavy quark photoproduction in ultraperipheral heavy ion collisions". In: *Phys. Rev. C* 66 (2002), p. 044906.

Sigurd Nese (University of Oslo)

Hard Probes 2024

Charm production has been studied previously in DIS and fixed-target experiments

- Photoproduction of charm has been studied in fixed target experiments at Fermilab and the CERN SPS at lower energies
- Charm production was studied in deep inelastic ep scattering at HERA

Halina Abramowicz et al. "Combination and QCD analysis of charm and beauty production cross-section measurements in deep inelastic ep scattering at HERA". In: *The European Physical Journal C* 78 (2018), pp. 1–32.
M. P. Alvarez et al. "Study of charm photoproduction mechanisms". In: *Z. Phys. C* 60 (1993), pp. 53–62.
J. C. Anjos et al. "A Study of the Semileptonic Decay Mode D0 → K- e+ Electron-neutrino". In: *Phys. Rev. Lett.* 62 (1989), pp. 1587–1590.

Sigurd Nese (University of Oslo)

Hard Probes 2024

Measuring charm photoproduction gives access to the low-x region of gluon PDF

• Low-*p*_T charm hadrons on the gap side reach smaller gluon Bjorken-x

• Gluon x is correlated with charm hadron rapidity

Energy and $p_{\rm T}$ probed by ALICE corresponds to important dynamical range of photoproduction process

• Wide range of photon-nucleon CoM energies $W_{\gamma N}$ seen

• Low $p_{\rm T}$ peak of photoproduced charm is within reach

12

14

18 20

 p_{\perp} (GeV/c)

Inelastic UPC events are characterized by a rapidity gap on one side

- Relatively low photon energy results in peak of particle production being shifted in rapidity
- No dedicated trigger for events with single rapidity gap in Run 1 and Run 2 − In Run 3, ALICE uses continuous readout → Inelastic photonuclear events are collected

This analysis:

13 14 18 Event selection: FT0, ZDC
 6 7 15 Tracking: ITS, TPC
 12 15 PID: TPC, TOF

Zero Degree Calorimeter: Measures energy of spectator nucleons

Rapidity gap selection is done using the FT0 detectors

- FT0 measures charged particles at very forward rapidities:
- FT0-A: 3.5 < η < 4.9
- FT0-C: $-3.3 < \eta < -2.1$
- Require amplitude below threshold on photon side, above threshold on gluon side

Event selection leads to asymmetric track pseudorapidity distributions in the central barrel

Further event selection is done by selecting on neutron emission

- Require 0 neutrons on the side with rapidity gap
- Require at least 1 neutron on the side opposite the rapidity gap

Sigurd Nese (University of Oslo)

Further event selection is done by selecting on neutron emission

- Require 0 neutrons on the side with rapidity gap
- Require at least 1 neutron on the side opposite the rapidity gap

Sigurd Nese (University of Oslo)

D^{0} and $\overline{\mathsf{D}}^{\mathsf{0}}$ were reconstructed in the $\mathsf{K}\pi$ decay channel

- Track $|\eta| <$ 0.9, $p_{\mathrm{T}} >$ 0.5 GeV/c
- Kaon PID using TPC d*E*/dx and time-of-flight
- Selection on decay length projected along momentum

• Signal described by Gaussian, background by exponential function

D^0 and \overline{D}^0 candidates are reconstructed down to $p_T = 0$

- Extract yield of D^0 in bins of p_T
- Bulk of production is at low $p_{\rm T}$
- ALICE covers down to $p_T = 0$, where low-x gluon dynamics is most relevant

1.95

M_{v=} (GeV/c²)

D^\pm were reconstructed in the $\mathsf{K}\pi\pi$ decay channel

- Track $|\eta| <$ 0.9, $p_{
 m T} >$ 0.5 GeV/c
- Kaon PID using TPC d*E*/dx and time-of-flight
- Selection on decay length projected along momentum

• Signal described by Gaussian, background by 2nd degree polynomial

D^* were reconstructed in the $D^* \rightarrow D^0 \pi \rightarrow K \pi \pi$ decay channel

- Track $|\eta| < 0.9$
- D^0 daughter candidates: $p_T > 0.5 \text{ GeV}/c$
- Primary π candidates: $p_{\rm T} > 0.1 \,{\rm GeV}/c$
- Kaon PID using TPC d*E*/dx and time-of-flight
- Selection on D⁰ decay length projected along momentum

Hard Probes 2024

${\rm J}/\psi$ was reconstructed in the dielectron channel

- Track $|\eta| < 0.9$
- Electron PID using TPC dE/dx and time-of-flight
- Electron $p_{\rm T} > 1 \, {\rm GeV}/c$
- This is another example of physics processes never studied in UPCs before
- Access to many charm channels gives better handle on hadronization

p-Pb collisions in Run 4 will provide $\gamma+p$ reference data

• p-Pb collisions planned for Run 4 will provide $\gamma+{\rm p}$ reference data

 $\rightarrow\,$ quantify nuclear effects

Summary and conclusions

- ALICE captures inelastic UPCs using continuous readout in Run 3
- D^0 and J/ψ are reconstructed down to $p_T = 0$
- Multiple charm channels will give better handle on hadronization
- Ongoing work to obtain normalized cross sections and compare to theory predictions

Backup

Reconstructing both charm hadrons in the event narrows the gluon x range of the measurement

FIT detector

- Cherenkov quartz radiators with MCP-PMT for light detection.
 (MCP-PMT = Microchannel-plate photomultipliers)
- Each MCP divided into 4 channels.

Fig. 2. MCP-PMT with coupled quartz radiator.

C-side 28 MCP 112 channels

