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In ultra-peripheral heavy-ion collisions, electromagnetic interactions dominate

@ Impact parameter is greater than the sum of the radii — strong interactions suppressed

@ Heavy nuclei are sources of strong EM fields — equivalent flux of photons
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Heavy quarks are produced in inelastic photonuclear interactions

@ Photon can interact in direct or

anomalous process Pb :k HT\H » Pb

@ Can result in photoproduction of charm
quarks, emerging as open- or
hidden-charm hadrons \

@ The QCD scale is given by
Q2% = 4(mé + p-%-) — pQCD calculations
are applicable down to pt = 0.

@ One gluon interacts

— one factor of gluon PDF _ _
@ Theoretical calculation:

@ Measuring charm hadrons gives access to _ N
gluon PDF down to x <10~% — probe o(Pb+Pb = Pb 4 cc +X) ~ 2b

saturation, shadowing

Spencer R. Klein, Joakim Nystrand, and Ramona Vogt. “Heavy quark photoproduction in ultraperipheral heavy ion
collisions”. In: Phys. Rev. C 66 (2002), p. 044906.
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Charm production has been studied previously in DIS and fixed-target experiments
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Halina Abramowicz et al. “Combination and QCD analysis of charm and beauty production cross-section
measurements in deep inelastic ep scattering at HERA". In: The European Physical Journal C 78 (2018), pp. 1-32.

M. P. Alvarez et al. “Study of charm photoproduction mechanisms”. In: Z. Phys. C 60 (1993), pp. 53-62.

J. C. Anjos et al. “A Study of the Semileptonic Decay Mode DO — K- e+ Electron-neutrino”. In: Phys. Rev. Lett. 62
(1989), pp. 1587-1590.
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Measuring charm photoproduction gives access to the low-x region of gluon PDF
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@ Low-pt charm hadrons on the gap side @ Gluon x is correlated with charm hadron
reach smaller gluon Bjorken-x rapidity
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Energy and pr probed by ALICE corresponds to important dynamical range of
photoproduction process
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@ Wide range of photon-nucleon CoM @ Low pt peak of photoproduced charm is
energies W,y seen within reach
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Inelastic UPC events are characterized by a rapidity gap on one side

Nucleus stays intact

v
Pb —Pp= P Pb

o Relatively low photon energy results
in peak of particle production being
shifted in rapidity

Rapidity gap

@ No dedicated trigger for events with
single rapidity gap in Run 1 and Run
2 —In Run 3, ALICE uses continuous
readout — Inelastic photonuclear

events are collected \

Nucleus breaks up

No rapidity gap
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ALICE layout in Run 3

This analysis:
@ @ @ Event selection: FT0, ZDC

@ @ () Tracking: ITS, TPC
@ @ PID: TPC, TOF

Zero Degree Calorimeter:
Measures energy of spectator nucleons
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Rapidity gap selection is done using the FTO detectors

ALICE Performance
Run3, Pb-Pb |s\, = 5.36 TeV
T r T
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@ FTO measures charged particles at very
forward rapidities:

e FTO-A: 35 <n < 4.9
e FTO0-C: —33 <n< =21

@ Require amplitude below threshold on
photon side, above threshold on gluon side
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Event selection leads to asymmetric track pseudorapidity distributions in the central barrel
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Pseudorapidity gap 3.5 <n < 4.9

Primary vertex tracks
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Further event selection is done by selecting on neu

@ Require 0 neutrons on the side with rapidity gap

tron emission

@ Require at least 1 neutron on the side opposite the rapidity gap
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Further event selection is done by selecting on neutron emission

@ Require 0 neutrons on the side with rapidity gap
@ Require at least 1 neutron on the side opposite the rapidity gap

ALICE Performance, Pb-Pb, |/sy, = 5.36 TeV ALICE Performance, Pb-Pb, \(s, = 5.36 TeV
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D? and D° were reconstructed in the K7 decay channel
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D° and D° candidates are reconstructed down to pr=20
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@ Bulk of production is at low pt

@ ALICE covers down to pt = 0, where
low-x gluon dynamics is most relevant
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D* were reconstructed in the K7 decay channel

X O3
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@ Signal described by Gaussian, background by 2nd
degree polynomial
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D* were reconstructed in the D* — D°r — Kz decay channel
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J/ib was reconstructed in the dielectron channel

P ‘ ‘
| ALICE Performance
L -0S-LS ]
@ Track |n| < 0.9 " Pb-Pb, |Sy=5.36 TeV T 1
@ Electron PID using TPC dE/dx % 1001 EJ/PC (y++|_3b—>J/l(])J-;X) --Background ]
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@ This is another example of physics 8 50
. . [%2]
processes never studied in UPCs 2
before g
0
@ Access to many charm channels

gives better handle on hadronization
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p-Pb collisions in Run 4 will provide y+p reference data
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@ p-Pb collisions planned for Run 4 will provide v+p reference data
— quantify nuclear effects
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Summary and conclusions

@ ALICE captures inelastic UPCs using continuous readout
in Run 3
0
@ D" and J/i) are reconstructed down to pr =0
@ Multiple charm channels will give better handle on
hadronization
@ Ongoing work to obtain normalized cross sections and
compare to theory predictions
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Reconstructing both charm hadrons in the event narrows the gluon x range of the

measurement
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FIT detector

FDD-C

Detector z[mml  Dynin Omax

FDD-A 16960 4.8 6.3
FTO-A 3346 3.5 4.9
FVO 3208 2.2 5.1
FTO-C -843 33 <2.1
FDD-C -19566 -7.0 -4.9

2 - distance parallel (o beam direction between the nominal

in
Based on the latest detector position measurements as of 7.02.2022.
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FTO

@ Cherenkov quartz radiators with
MCP-PMT for light detection.
(MCP-PMT = Microchannel-plate
photomultipliers)

@ Each MCP divided into 4 channels.

Fig. 2. MCP-PMT with coupled quartz radiator.
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