Detecting fluctuating gluonic structure via energydependent incoherent J/Ψ photoproduction in Pb-Pb UPCs at 5.02 TeV with the CMS experiment

Zaochen Ye (SCNU)

For the CMS Collaboration CMS-PAS-HIN-23-009

Advantages of Gluon Saturation Search in Nucleus

Gluon saturation is expected to be more easily reached in heavy nuclei

Vector Meson Photoproduction in UPCs

VM photoproduction is sensitive to the gluonic structure of target nucleus

Coherent photoproduction:

- Photon interact with entire nucleus
- Target nucleus remains intact
- VM <p_T> ~ 50 MeV

 \vec{B}

ρ, J/ψ, Υ...

• Probing the averaged gluon density

Incoherent photoproduction:

- Photon interact with individual nucleon or sub-nucleon
- Target nucleus usually breaks
- VM <p_> ~ **500 MeV**
- Probing the local gluon density and fluctuations

Recent Coh. J/ Ψ Photoproduction off Pb Nucleus

Recent Coh. J/ Ψ Photoproduction off Pb Nucleus

Probing Fluctuating Gluonic Structure via γ +p

CGC IPsat considering the **fluctuations** of **geometry** (shape and size), **energy density**, **local saturation scale** and **color charge**, successfully describe the HERA data

CGC Ipsat is impact parameter dependent saturation model under the Color-Glass Condensate framework.

Probing Fluctuating Gluonic Structure via Incoh. γ +Pb

- CGC IPsat (w or w/o) sub-nucleonic fluctuations cannot describe the data
- LTA (leading twist approximation, nuclear shadowing model) seems to be better?

Probing Fluctuating Gluonic Structure via Incoh. γ +Pb

- CGC IPsat (w or w/o) sub-nucleonic fluctuations cannot describe the data
- LTA (leading twist approximation, nuclear shadowing model) seems to be better?

How the fluctuating gluons evolute, especially towards small-x limit?

- Would incoh. production **vanish** if **black disk limit is reached**?
- \circ Unfortunately, the energy-dependent incoh. J/ Ψ photoproduction has never been measured

"Two-way Ambiguity" in A-A UPCs

• This ambiguity exists for both **coherent** and **incoherent** processes

Solve "Two-Way Ambiguity" via Forward Neutrons

J/Ψ-Xn (Same Direction)

 J/Ψ -Xn (Opposite Direction)

V. Guzey, M. Strikman, M. Zhalov, EPJC (2014) 72 2942

Incoh. J/Ψ photoproduction itself has ~85% chance to induce the forward neutrons
 → Detecting these neutrons will identify target nucleus
 → Help to solve the "two-way Ambiguity"

Example of Signal Extraction (**OnXn**)

- **No correlation** between forward neutrons and coh. production
- **Strong correlation** between forward neutrons and incoh. production

+v

Total InCoh. J/ Ψ Photoproduction Cross Section

Incoh. J/ Ψ Cross Section per γ +Pb

Cross Section Ratio of Incoh/Coh

Theoretical uncertainties from VM wave function, nuclear density, nuclear form factor, free nucleon PDFs, photon flux, and J/ Ψ formation probability are largely canceled. **Cleanest test** for examining theoretical assumptions on nuclear effects: saturation or nuclear shadowing...

Cross Section Ratio of Incoh/Coh

Cleanest test for examining theoretical assumptions on nuclear effects: saturation or nuclear shadowing...

Theoretical uncertainties from VM wave function, nuclear density, nuclear form factor, free nucleon PDFs, photon flux, and J/Ψ formation probability are largely canceled.

Nuclear Suppression

 $S^{J/\psi}$

 $\sigma^{exp}_{\gamma Pb \rightarrow J/\psi Pb'}$ N $\sigma^{IA}_{\gamma Pb \rightarrow J/\psi Pb'}$

No nuclear effects

- Stronger suppression towards lower x, and eventually flattens out
- ALICE data follows CMS data trend
- Incoh. J/ Ψ is more suppressed than Coh. J/ Ψ
- Incoh. J/ Ψ gets closer to Coh J/ Ψ for $x < 10^{-4}$
- No models can describe the data

 $S_{\rm coh}^{\rm J/\psi}(x,\mu^2) = (R_g)^2$

Summary

- First energy-dependent measurement of incoh. J/Ψ photoproduction off nucleus
- Probing fluctuating gluon fields over broad x interval: 5.8x10⁻³ - 6.5x10⁻⁵
- Ratio of Incoh/Coh is **~0.3-0.5** for 40 < W < 400 GeV
 - Sub nucleonic fluctuations are need to describe data
 - Not support that black disk limit is reached
- Nuclear suppression of Incoh. J/Ψ photoproduction:
 - Stronger towards lower *x*, eventually flattens out
 - Stronger than Coh. J/ Ψ photoproduction
- Theoretical models (saturation or shadowing) only occasionally describe partial measured observables
 - Strong constrains on model assumptions

CMS-PAS-HIN-23-009

THANKS

Special thanks to the theorists for their valuable discussions and insightful predictions:CGC: H. Mantysaari, F. Salazar and B. SchenkeLTA: V. Guzey, M. Strikman, M. Zhalov and E. Kryshen

Backup

Neutron Tag with Zero Degree Calorimeter

Solution Based on Forward Neutrons

V. Guzey, M. Strikman, M. Zhalov, EPJC (2014) 72 2942

Coh. Jpsi Xsec at w1 and w2 are solved by making use of neutrons induced by EMD process

Incoh. J/Psi production itself
has ~85% chance to induce the
forward neutrons →
Detecting these neutrons will
identify the target nucleus and
solve the two-way ambiguity

Solve "Two-Way Ambiguity" via Forward Neutrons

Both incoherent and EMD processes can induce neutron emissions, their configurations need careful considerations for the photon flux calculations.

- 1. OnOn events, no neutrons are from either process
- 2. OnXn events, mainly two cases:
 - a) neutrons solely from incoherent process (dominant)
 - b) neutrons from both processes, aligning each other with 50% chance
- 3. XnXn events:
 - a) Single-side neutrons from both processes, opposing each other
 - b) EMD-induce neutrons in both directions, regardless of incoherent process

The photon flux calculation are only available for EMD process, so the measurements from 0n0n and 0nXn are combined as 0nAn* for a practical photon flux determination and corrections.

$$\frac{d\sigma_{\text{PbPb}\to\text{PbPb}'J/\psi}^{0n\text{An}^{*}}(y)}{dy} = \frac{d\sigma_{\text{PbPb}\to\text{PbPb}'J/\psi}^{0n\text{An}^{*}}(y)}{dy} + \frac{d\sigma_{\text{PbPb}\to\text{PbPb}'J/\psi}^{0n0n}(y)}{dy} \qquad n_{\gamma/\text{Pb}}^{0n\text{An}^{*}}(\omega) = n_{\gamma/\text{Pb}}^{0n0n(\text{EMD})}(\omega) + \frac{1}{2}n_{\gamma/\text{Pb}}^{0n\text{Xn}(\text{EMD})}(\omega)$$

$$\sigma_{\gamma\text{Pb}\to J/\psi\text{Pb}'}(\omega) = \frac{d\sigma_{\text{PbPb}\to\text{PbPb}'J/\psi}^{0n\text{An}^{*}}(y)}{dy} / n_{\gamma/\text{Pb}}^{0n\text{An}^{*}}(\omega)$$
No neutrons to tag the target nucleus, assume the same relative fractions at (+y) and (-y) as in 0nXn

Sepptember 25, 2024

Zaochen Ye (SCNU) at HP2024

Direct disentanglement

J/Ψ-Xn (Same) J/Ψ-Xn (Opposite)

Photon Flux: Realistic Nucleus vs. Point Charge

Photon fluxes coming from a nucleus in the point-like source approximation and the realistic description as functions of impact parameter b calculated at different photon energies: 100 MeV (a), 100 GeV (b)

dSigma/dt ~ exp(-B*t)

B represents the size of fluctuating target objects

The elastic/exclusive production dominant p_T region, the t slopes agree with the theoretical calculations parameterized to H1 data

Sepptember 25, 2024

Zaochen Ye (SCNU) at HP2024

STAR: PRC 110 014911 (2024)

ALICE: PRL 132, 162302 (2024)