

Exclusive Y(1S) photoproduction in PbPb collisions at 5.02 TeV

Prabhat R. Pujahari

(for the CMS Collaboration)

CMS

Indian Institute of Technology Madras

Hard Probes, 2024

pPb Exclusive Y(1S) photoproduction in PbPb collisions at 5.02 TeV

Prabhat R. Pujahari

(for the CMS Collaboration)

CMS

Indian Institute of Technology Madras

Ultra-Peripheral Collisions

Z₁e

- $\Box \quad \text{Impact parameter } b >> 2R (R_A + R_B)$
- □ Implies electromagnetic interaction by photons
- $\Box \quad \text{Photon flux} \propto Z^2 \quad (Q^2 < \hbar^2/R^2)$
- □ Photo-nuclear interaction:
 - Incoherent interaction (dominant): γ emitted by Pb
 Pomeron exchange between bb pair and target proton
 Coherent interaction(small contribution): γ emitted by p
 - Pomeron exchange between $b\overline{b}$ pair and target Pb nucleus
- $\Box \quad \gamma \gamma \text{ QED background} \rightarrow \text{dominant at low dimuon-} p_{T}$
- $\Box \quad Proton \ dissociation \rightarrow dominant \ at \ high \ dimuon-p_T$

Physics Motivation

UPCs and Saturation

- Gluons increasingly dominate the proton's structure at high energies (DIS experiments)
- Saturation stage is reached where: Gluon Recombination ~ Gluon Splitting
- □ Conclusive evidence of saturation remains elusive
- □ Accessing the saturation scale is easier in heavy nuclei $Q^{2}{}_{S}(x) \sim (A/x)^{\frac{1}{3}}$

- **D** Photon fluctuate into a quark-antiquark $(q\overline{q})$ pair color dipole
- Dipole interacts with the target nucleus through a t-channel exchange of two gluons
- At first approximation, it is highly sensitive to the gluon density of the target: $\sigma \sim [xg(x, Q^2)^2]$
- Heavy quarkonia set sufficiently large scales for perturbative QCD to be valid.
- Lighter VMs $(J/\psi, \rho, \phi,..)$ are more sensitive to saturation effects (larger color dipoles).

 \Box $\Upsilon(1S)$ constrains the transition to the "diluted" regime.

Map out transitions from diluted to saturated regimes

Different VM states map out the transition to the low-x regime.

Aim of exclusive Y photoproduction study in pPb

Photon-Nuclear Interaction

□ In leading logarithmic approximation of pQCD, photoproduction cross-section of Υ is related to the gluon density in proton:

$$\frac{d\sigma_{\gamma p \to \gamma p \Upsilon}}{dt} \bigg|_{t=0} = C(\mu^2) [xG(x,\mu^2)]^2$$
Where $x = (M_{\Upsilon}/W_{\gamma p})^2$, $\mu^2 = M_{\Upsilon}^2/4$,
 $C(\mu^2) = M_{\Upsilon}^3 \Gamma_{u+u-\pi}^3 \alpha_s (\mu^2)/48 \alpha_{om} \mu^8$

$$C(\mu) = M_{\Upsilon} \Gamma_{\mu^+\mu^-} \pi \alpha_s(\mu) / 48\alpha_{em} \mu$$

- **□** Region of interest for PDFs:
 - looking for poorly known gluon distribution in the proton at low-x (10⁻² to 10⁻⁴) and search for new physics (new info on saturation effects)

The CMS Detector

 \Box HF ensures activity on the proton side while the ZDC calorimeter ensures no neutrons are detected in the intact Pb nucleus side that is the source of the γ flux.

□ Quarkonia detected via dimuon decay channel: $Q \rightarrow \mu^+ \mu^-$

- □ Muon selection: $-p_T^{\mu} > 3.3 \text{ GeV/c}$ $-|\eta^{\mu}| < 2.2$
- ❑ Upsilon candidate in pPb collision at 5.02 TeV
 |y| < 2.2

CMS Experiment at the LHC, CERN Data recorded: 2016-Nov-18 05:51:16.422656 GMT Run / Event / LS: 285480 / 49966555 / 240 Events are very clean with two muon Tracks and no activity in the entire detector UPC trigger: low-multiplicity (< 6 tracks) in tracker

Hard Probes, 2024

Differential Cross-section with t

Phys. Lett. B 708 (2012) 14

Differential Cross-section with y

☐ Estimating Differential Cross Section:

 $\frac{d\sigma_{\mathrm{Y}(nS)}}{dy} = \frac{N_{\mathrm{Y}(nS)}^{corr}}{L \times \Delta y}$

- **C** Rapidity region: |y| < 2.2
- Calculated cross-section of Y(1S) state in 4 rapidity regions
- JMRT-LO results are systematically above the data points and other models

 $W_{\gamma p}^2 = 2 E_p M_\Upsilon \exp(\pm y)$

- □ Cross Section as a Function of W_{γp} $\sigma_{\gamma p \to Y(1S)p} = \frac{1}{\Phi} \frac{d\sigma_{Y(1S)}}{dy}$
- □ Data is compatible with a powerlaw dependence of $\sigma(W_{\gamma p})$
- Not in favour of LO pQCD models

- \Box 32.65 nb⁻¹ of pPb data at 5.02 TeV is analysed
- □ To extract the dimuon from exclusive Upsilon, proper selection cuts are applied.
- □ The y and t dependent differential cross sections are compared with various theoretical models
- □ The exponential slope of the t-dependence is in agreement with the earlier measurements and consistent with predictions based on pQCD models.
- Cross-section is measured as a function of photon-proton centre of mass energy. Our data is compatible with a power law dependence of $W_{\gamma p}$ and disfavours faster rising extrapolations of HERA results (STARLIGHT) and LO pQCD predictions.

On going efforts in CMS for the measurement of exclusive coherent photoproduction of $\Upsilon(1S)$ state in PbPb @5.02 TeV and pPb @8.02 TeV!

The CMS measurements are compared to the following theoretical predictions:

- □ The JMRT model, a pQCD approach that uses standard (collinear) PDFs with a skewness factor to approximate GPDs, including LO and NLO corrections, and a gap survival factor to account for the exclusive production.
- □ The factorized impact parameter saturation model, fIPsat, with an eikonalized gluon distribution function that uses the colour glass condensate (CGC) formalism to incorporate gluon saturation at low x.
- □ The Iancu, Itakura and Munier (IIM) colour dipole formalism with two sets of meson wave functions, boosted Gaussian (BG) and light-cone Gaussian (LCG), which also incorporate saturation effects.
- □ The impact parameter CGC model (bCGC), which takes into account the t-dependence of the differential cross section, using the BG wave function.