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amical modelling in small vs. large systems
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e large systems: dominated by hydrodynamic QGP, leaves imprints of
thermalization and collectivity in final state observables:
Vvn, {(pr), particle yields, ...
e small systems: might not fully equilibrate = applicability of hydro unclear
e kinetic theory can describe off-equilibrium systems,
applicable to free-streaming and hydrodynamic systems
= in comparison to hydrodynamics, can discern where it is accurate
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Applicability of hydrodynamics in terms of opacity
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- find observables that untangle effects of response and geometry on flow
- look for model-independent quantification of hydrodynamicity

- verify these in event-by-event simulations




Model and Setup: Kinetic Theory

e microscopic description in terms of averaged on-shell phase-space distribution of
massless bosons:
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e boost invariance
e initialized with vanishing longitudinal pressure and no transverse momentum
anisotropies

e time evolution: Boltzmann equation in conformal relaxation time approximation
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results will depend only on initial state and opacity

e dimensionless parameter: opacity ~ “total interaction rate”

Kurkela, Wiedemann, Wu EPJC 79 (2019) 965
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e encodes dependencies on viscosity, transverse size and energy scale



Initial conditions

e initial conditions with event-by-event fluctuations (TRENTO model)
Moreland, Bernhard, Bass PRC 92 (2015) 011901(R)
e pre-generated nucleon positions to account for correlations like a-clustering
e reasons for O+O:
e intermediate system size (§ ~ 3)
e same collision system ran at RHIC and LHC for the first time!

Pb+Pb 2.76 TeV 040 7 TeV

Alvioli, Drescher, Strikman PLB 680 (2009) 225 Loizides, Nagle, Steinberg SoftwareX 1-2 (2015) 13

(example profiles from 20-30% centrality class)



Event-by-event flow responses
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e main difference between RHIC and LHC is energy scale

e variation in geometry introduces spread of flow response
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ydro /\5ZP){TA

o still mostly depends on 4 with &), as before



Flow cumulants in O+0
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e larger opacity: larger magnitude of flow response and better
agreement between RHIC and LHC

e centrality dependence of k(%) introduces modulation

e flow fluct. dominated by avg. response to geometry fluct.

((ep)") = ((re2)™) = R"((e2)™) + ...



Cumulant ratios probe geometry

If ((ep)™) = K™((e2)"™), then K cancels in ratios:

o {4} _ ()" = 2((p)*)* _ ((2)") = 2((2)*)* _ cer{4}
Cep {2} ((ep)?)? ((e2)?)? cep {2}°
= ratio sensitive mostly to geometry

Giacalone, Yan, Noronha-Hostler, Ollitrault PRC 95 (2017) 1, 014913
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Hydrodynamization observable: definition

o cancel geometry: comparing systems with same geometry
(and same 7n/s):
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o use logarithm to turn ratios into differences:

hydrodynamization observable
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Hydrodynamization observable: Proof of principle

crosscheck of W-observable:

1. extract k(%) from fit to simulation results

2. compute dlog’f. smooth monotonous transition from 1 to 0
3. compare W|th simulation data for W-observable: agreement!
06 ! Wlog()/d1og(3)
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Hydrodynamization observable: real data

o first test with LHC data: results agree with theory
(¥ from Trento initial conditions, 77/s chosen s.t. flow matches)
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e centrality dependence off for v2{2} (nonflow?),
but accurate for vo{4}



e applicability of hydrodynamics can be assessed by comparing to
kinetic theory, but uncertainties in initial state obscure results

e effects of initial state and dynamical response on flow can be
untangled using appropriate observables:
- cumulant ratios for initial state geometry
- W-observable for hydrodynamization via slope of flow
response curve

_ 2 Alog(e2{2k}) _ dlogk
" kAlog(dE, /dy) ~ dlog#

W

e verified discriminative power in event-by-event simulations

e criterion for hydrodynamic behaviour in experiment: W < 0.5



Backup



Non-conformal effects

e probing non-conformal effects in hydro simulations with chiral eos

e losing theoretical control over setup

e might need to adjust calibration curve; at the very least still applicable for
mid-central collisions at 4 = 4
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Hydrodynamics in real collision systems

Taking the criterion of 4 2 3 seriously, what does this mean for the applicability of
hydrodynamics to “real-life” collisions?
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very high multiplicity events approach regime of applicability, but do not reach it
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far from hydrodynamic behaviour




ynamization in viscosity and ce
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e transverse expansion sets in at 7, ~ 0.2R, independent of opacity

e Hydro appicable when Re™! < Rec_1 ~ 0.75 after timescale
THydro/ R =~ 1.53 ’?74/3 [(Regl)*?’/2 _ 1.21(Re;1)0'7]

e hydrodynamization before transv. Expansion for 4 2 3



What might happen when going beyond RTA?

e more complex kernels will introduce further parameter dependence, but opacity
dependence might still be "leading order approximation”

e in Bjorken flow, equilibration happens in very similar ways across different model
descriptions:
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Giacalone, Mazeliauskas, Schlichting, PRL 123 (2019) 262301



Model and Setup: Hydrodynamics

e 2nd order Miiller-Israel-Steward type hydrodynamics (VHLLE)
with RTA transport coefficients
Karpenko, Huovinen, Bleicher Comput. Phys. Commun. 185, 3016 (2014)

e How to define initial state? Hydro deviates at early times!
Naive Hydro
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e solution: hydro initial condition scaled according to attractor curve prediction of
early time behaviour

Ambrus, Schlichting, Werthmann PRD 107 (2023) 094013



Initializing on the attractor

e accuracy depends on timescale separation of pre-equilibrium

expansion
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