

Design and expected performance of the ALICE ITS3 tracker upgrade

Bong-Hwi Lim (INFN Torino) on behalf of **ALICE** collaboration 24/09/2024

The ALICE experiment

- - Study of strongly interacting matter at extreme densities (QGP) in heavy-ion collisions at the LHC (CERN)
 - **Very high multiplicities:** tracking of up to O(10k) particles in
 - Charm and beauty hadron reconstruction
 - Low momentum (≲1GeV/c) particle

The ALICE experiment

- Study of strongly interacting matter at extreme densities (QGP) in heavy-ion collisions at the LHC (CERN)
 - **Very high multiplicities:** tracking of up to O(10k) particles in single event
- Charm and beauty hadron reconstruction
- Low momentum (≲1GeV/c) particle reconstruction

ALICE, CERN-LHCC-2019-018, 2019

ALICE, CERN-LHCC-2019-018, 2019

ITS Inner barrel

ITS half IB

ALICE, CERN-LHCC-2019-018, 2019

ITS half IB

• Replace the inner barrel (3 layers) of the current ITS \rightarrow new 3 layers of ITS3 (wafer-scale size one chip)

ALICE, CERN-LHCC-2019-018, 2019

Cylindrical support structure

• Replace the inner barrel (3 layers) of the current ITS \rightarrow new 3 layers of ITS3 (wafer-scale size one chip)

ALICE, CERN-LHCC-2019-018, 2019

How can we achieve? **Possible improvements**

Some key points of ITS3 upgrade

ITS half IB

ITS3 engineering model

	ITS2	ITS3	
Technology	180 nm	65 nn	
Chips	432	6	
Pixel size	29 x 27 µm²	20.8 x 22.8	
Material budget / layer	0.35 % x/Xº	0.086 %	
r lo	24 mm	19 mr	
r Beam pipe	18.2 ± 0.8 mm	16 + 0.5	

- **3 wafer-scaled** bent CMOS active silicon \bullet sensor for half barrel
 - ~26 x ~10 cm size for last layer \bullet

Wafer-scaled sensor (1chip)

ITS half IB

ITS3 engineering model

	ITS2	ITS3	
Technology	180 nm	65 nn	
Chips	432	6	
Pixel size	29 x 27 μm²	20.8 x 22.	
Material budget / layer	0.35 % x/Xº	0.086 %	
r L0	24 mm	19 mr	
r Beam pipe	18.2 ± 0.8 mm	16 + 0.5	

- **3 wafer-scaled** bent CMOS active silicon \bullet sensor for half barrel
 - ~26 x ~10 cm size for last layer \bullet

r = 24 mm

Wafer-scaled sense

ITS half IB

ITS3 engineering model

oor (1 obin)			
sor (renip)		ITS2	ITS3
f = 19 mm	Technology	180 nm	65 nm
	Chips	432	6
	Pixel size	29 x 27 µm²	20.8 x 22.8
	Material budget / layer	0.35 % x/Xº	0.086 %
	r L0	24 mm	19 mn
	r Beam pipe	18.2 ± 0.8 mm	16 + 0.5

- **3 wafer-scaled** bent CMOS active silicon \bullet sensor for half barrel
 - ~26 x ~10 cm size for last layer \bullet

"What we designed" TEST CHIPS MOST NOSS

Reticle (mask)

"What we want to fabricate"

Wafer (φ=300mm)

Reticle (mask)

Wafer (φ=300mm)

Wafer (φ=300mm)

Wafer (φ=300mm)

Wafer (φ=300mm)

What we can get? **ITS3 performance improvements**

- **2x improvement** in the pointing resolution (left: $r\varphi$, right: z) of primary charged pion
 - Drastic reduction of material budget (0.35 \rightarrow 0.086% X₀/layer)
 - Being closer to the interaction point (24 \rightarrow 19 mm)
 - Thinner and smaller beam pipe (700 \rightarrow 500 µm; 18.2 \rightarrow 16.0 mm)

ALICE, ALICE-TDR-021, 2024

What we can get? **ITS3 performance improvements**

- **2x improvement** in the pointing resolution (left: $r\varphi$, right: z) of primary charged pion
 - Drastic reduction of material budget (0.35 \rightarrow 0.086% X₀/layer)
 - Being closer to the interaction point (24 \rightarrow 19 mm)
 - Thinner and smaller beam pipe (700 \rightarrow 500 µm; 18.2 \rightarrow 16.0 mm)

ALICE, ALICE-TDR-021, 2024

What we can get? **Measurements benefitting from ITS3**

- Directly boosts the ALICE core physics program that is largely based on:
 - Low momenta \bullet
 - Secondary vertex reconstruction

What we can get? **Measurements benefitting from ITS3**

- Directly boosts the ALICE core physics program that is largely based on:
 - Low momenta \bullet
 - Secondary vertex reconstruction

ITS3 design and R&D Activities

- Can we bend it?
- Can we cool it down?
- Can it withstand vibration from cooling?
- Can we use 65 nm technology?
- Can we do the stitching?

ITS design and R&D Flexibility of silicon

- **Monolithic Active Pixel Sensors are quite flexible**

Bending test with ITS2 sensor: Target radii (19 mm) easily achievable

ITS design and R&D Bending ALPIDEs (ITS2) performance

- "µITS3": 6 ALPIDEs (180 nm) bent to ITS3 target radii
- No degradation of detection efficiency observed
- Results validated on bent 65 nm pixel test structures
- Electrical interconnections to FPC after bending through wire bonding tested

Inefficiency test results

65 nm sensor with FPC

ITS design and R&D Bending ALPIDEs (ITS2) performance

- "µITS3": 6 ALPIDEs (180 nm) bent to ITS3 target radii
- No degradation of detection efficiency observed
- Results validated on bent 65 nm pixel test structures
- Electrical interconnections to FPC after bending through wire bonding tested

ITS design and R&D Air cooling test

ITS3 "bread board" model 3

The CFD simulations and the experimental results agree well - The simulations slightly over-predict the values in all cases.

ITS design and R&D Air cooling test

Power consumption tested:

ITS design and R&D Aeroelastic test

- Air flow: 8 m/s
- **Measured displacement:** \bullet
 - RMS_{airflow}: $< 0.4 \ \mu m$ \bullet
 - Maximum: ~1.1 µm
 - Requirement: < 2 µm

Bong-Hwi Lim (INFN Torino) | Hard Probes 2024 | 24/09/2024 | 13

ITS design and R&D Aeroelastic test

- Air flow: 8 m/s
- **Measured displacement:** \bullet
 - RMS_{airflow}: $< 0.4 \ \mu m$ \bullet
 - Maximum: ~1.1 µm \bullet
 - Requirement: $< 2 \mu m$

Bong-Hwi Lim (INFN Torino) | Hard Probes 2024 | 24/09/2024 | 13

ITS design and R&D Qualification of 65nm CMOS

- Concentrated effort ALICE ITS3 together with CERN EP R&D
- **Prototype sensors:** APTS (Analogue pixel test structure), DPTS (Digital pixel test structure), CE65
 - **DPTS (left):** Efficiency (> 99%) with low fake-hit rate ($< 2x10^{-3}$ pixel⁻¹s⁻¹) \bullet
 - **APTS (right):** Charge collection not deteriorated by irradiation

ITS design and R&D Qualification of 65nm CMOS

- Concentrated effort ALICE ITS3 together with CERN EP R&D
- **Prototype sensors:** APTS (Analogue pixel test structure), DPTS (Digital pixel test structure), CE65
 - **DPTS (left):** Efficiency (> 99%) with low fake-hit rate ($< 2x10^{-3}$ pixel⁻¹s⁻¹) \bullet
 - **APTS (right):** Charge collection not deteriorated by irradiation

ITS design and R&D Qualification of 65nm CMOS

- Concentrated effort ALICE ITS3 together with CERN EP R&D
- **Prototype sensors:** APTS (Analogue pixel test structure), DPTS (Digital pixel test struc
 - **DPTS (left):** Efficiency (> 99%) with low fake-hit rate ($< 2x10^{-3}$ pixel⁻¹s⁻¹)
 - **APTS (right):** Charge collection not deteriorated by irradiation

We can make the pixel sensor with this technology !

ITS design and R&D Stitched MAPS

- **Goal:** Feasibility of stitching process
- **MOnolithic Stitched Sensor (MOSS):**
 - 10 Repeated Sensor Units stitched together: 259 mm x 14 mm per sensor
 - 2 pixel pitches (18 μ m and 22.5 μ m) and 5 front-end variants

300 mm ER1 wafer

MOSS is operational and reaches full efficiency lacksquare

- Yield: currently under study with extensive characterization ulletcampaign with wafer prober.
- First beam tests performed at PS@CERN Detection efficiency: in line with expectations from MLR1 study

ITS design and R&D Stitched MAPS

- **Goal:** Feasibility of stitching process
- **MOnolithic Stitched Sensor (MOSS):**
 - 10 Repeated Sensor Units stitched together: 259 mm x 14 mm per sensor
 - 2 pixel pitches (18 μ m and 22.5 μ m) and 5 front-end variants

300 mm ER1 water

100

99

98

96

94

92

90

88

efficiency (%)

Detection

MOSS is operational and reaches full efficiency lacksquare

- Yield: currently under study with extensive characterization ulletcampaign with wafer prober.
- First beam tests performed at PS@CERN Detection efficiency: in line with expectations from MLR1 study

ITS design and R&D Stitched MAPS

- **Goal:** Feasibility of stitching process
- **MOnolithic Stitched Sensor (MOSS):**
 - 10 Repeated Sensor Units stitched together: 259 mm x 14 mm per sensor
 - 2 pixel pitches (18 μ m and 22.5 μ m) and 5 front-end variants

300 mm ER1 wate

100

99

98

96

94

92

90

88

efficiency (%)

Detection

- MOSS is operational and reaches full eff
 - Yield: currently under study with extent of ulletcampaign with wafer prober.
- First beam tests performed at PS@ Detection efficiency: in line with expected We can readout the stitched sensor !

Bong-Hwi Lim (INFN Torino) | Hard Probes 2024 | 24/09/2024 | 15

C 3

Sensor development Outlook

- **MOSAIX:** Final size 2D stitched sensor
- Modular design: each sensor is divided into 3, 4, or 5 segments with 12 RSUs.
- Each RSU is divided in turn in 12 fully independent tiles (powering, control and readout)
- **Currently working to submission !**

Summary

- ALICE is preparing the new ITS upgrade: **Truly cylindrical wafer-scale MAPS**
- **ITS3 key R&D questions answered:**
 - Can we **bent it?** → Bent MAPS demonstrated in beam
 - Can we cool it down? Can it withstand vibration from cooling? → Air cooling tested with aeroelastic
 - Can we use 65 nm technology? \bullet → 65nm process qualified with radiation
 - Can we do the stitching? \bullet → Stitching (MOSS) qualified
- Next steps:
 - Finalisation of the design and production of final prototype sensor (ER2)
- ALICE ITS3 on track for installation in LS3 (2026-2028)

ITS3 "bread board" model 3

Back up

Monolithic Active Pixel Sensor (MAPS) CMOS MAPS

ITS; Inner Tracking System

- 7 layers as barrel structure
- New ITS2 for ongoing Run3, fully operational (installed 2021, LHC LS2)
- Largest MAPS and pixel detector ever built
 - ~10 m², 24k chips, 12.5 Giga-pixels
- Fast readout rate: **100 kHz (Pb-Pb)**

ALICE, J. Phys. G 41 (2014) 087002

What can we achieve? **Observation on the current ITS**

ITS Inner Barrel Stave ITS half IB

Coldplate

Spaceframe

29 cm , 1.7 grai.

High Modulus fibres

High Thermal Conductive fibres

Polyimide pipes

Silicon makes only ~15% of the material. \bullet

Irregularities: support structures, cooling, and overlaps

ITS3 upgrade project Milestones of prototype sensor submission

- **Tower Partners Semiconductor (TPSCo) 65 nm CMOS Imaging Technology:**
 - Smaller transistors: higher integration density
 - Lower power consumption
 - Larger wafers 300 mm
- MLR 1 tape out (2020-12): Qualify the 65 nm process MAPS with 3 prototypes: APTS, CE65, DPTS
- ER1 tape out (2022-11): Stitching 1D (+ assess yields by the foundry) with 2 large sensors: MOSS, MOST
- **ER2 tape out (2024-fall):** ITS3 full-size prototype with full functionalities (power, readout, etc)
- ER3 tape out (2025-middle): ITS3 sensor production

26	2027	2028	2029	2030	2031	2032
Commissioning		LHC Run 4				

MLR1 wafer (1/4) and layout

ER1 wafer and layout

ITS design and R&D Qualification of 65nm CMOS: MLR1

Concentrated effort ALICE ITS3 together with CERN EP R&D

