A Large Ion Collider Experiment

ALICE 3

Physics programme and detector R&D

Cas van Veen (they/them) for the ALICE Collaboration Physikalisches Institut, Ruprecht-Karls Universität, Heidelberg

ALICE 3 - A short overview of the physics program

- High-precision beauty measurements
- Multi-charm baryons, P-wave quarkonia, exotic hadrons
- $D\bar{D}$ azimuthal correlations
- QGP thermal radiation
- Chiral symmetry restoration
- Fluctuations of conserved charges
- Ultra-soft photons and tests of quantum field theories
- And more, see Letter of Intent arXiv: 2211.02491

New detector for LHC Runs 5&6

ALICE 3 - A short overview of the physics program

- High-precision beauty measurements
- Multi-charm baryons, P-wave quarkonia, exotic hadrons
- $D\bar{D}$ azimuthal correlations
- QGP thermal radiation
- Chiral symmetry restoration
- Fluctuations of conserved charges
- Ultra-soft photons and tests of quantum field theories
- And more, see Letter of Intent arXiv: 2211.02491

New detector for LHC Runs 5&6

Multi-charm baryons, p-wave quarkonia and exotic hadrons

Goal: Establish connection between the thermalisation of charm quarks in the QGP and the formation of hadrons from deconfined quarks

Measurement: Measure the production of multi-heavy-flavor hadrons (like Ξ_{cc} , Ω_{cc} and ideally Ω_{ccc}) and p-wave quarkonia ($\chi_{c_{1,2}}$). Investigate dependence of the production of multi-heavy-flavor hadrons on the heavy-quark density that varies with rapidity

Method: Track all decay products, such as Ξ^- and Ω^- hyperons, before they decay further ("strangeness tracking")

<u>A Andronic et al.</u> JHEP 07 (2021) 035

Note: Adaptations made to show capabilities of ALICE 3

Multi-charm baryons, p-wave quarkonia and exotic hadrons

Detector requirements:

- Hadron identification over a wide p_{T} range (few hundred MeV/c to a few GeV/c)
- Tracking close to interaction point (first layer at 5 mm)
- High readout rates (>100 kHz Pb-Pb and 24 MHz pp)
- Large acceptance ($|\eta|$ < 4)

Multi-charm baryons, p-wave quarkonia and exotic hadrons

Detector requirements:

- Hadron identification over a wide p_{T} range (few hundred MeV/c to a few GeV/c)

Outerhade

 p_T/p_T

10

10

10

- Tracking close to interaction point (5 mm)
- High readout rates (>100 kHz Pb-Pb and 24 MHz pp)
- Large acceptance ($|\eta|$ < 4)

- Large coverage: |**η**| < 4 - Sensor pixel pitch ~ 50 μm for σPOS ≈ 10 μm - Very low material: ~1% X₀/ layer

ALICE3 study ACTS reconstruction

Ref. layout February 2024 η = 0 • B = 1 T. π

B = 1 T, p
B = 2 T, π
B = 2 T, p

10

Multi-charm baryons, p-wave quarkonia and exotic hadrons

Detector requirements:

Hadron identification over a wide p_{T} range (few hundred MeV/c to a few GeV/c)

15

Beam injection

- Tracking close to interaction point (5 mm)
- High readout rates (>100 kHz Pb-Pb and 24 MHz pp)
- Large acceptance ($|\eta|$ < 4)

Multi-charm baryons, p-wave quarkonia and exotic hadrons

Detector requirements:

- Hadron identification over a wide p_{τ} range (few hundred MeV/c to a few GeV/c)
- Tracking close to interaction point (5 mm)
- High readout rates (>100 kHz Pb-Pb and 24 MHz pp)
- Large acceptance $(|\eta| < 4)$

Strangeness tracking

R&D for the Inner Tracker

ITS3 engineering model 2

Sensor R&D leverages on ALICE ITS3 upgrade for Run 4

For more information Join: talk from Bong-Hwi Lim: Design and expected performance of the ALICE ITS3 tracker upgrade (next talk) Read: TDR ALICE ITS3

At top energy — r_0: 5 mm

IRIS system:

• Full scale prototypes are being developed

R&D for the Inner Tracker

ITS3 engineering model 2

Sensor R&D leverages on ALICE ITS3 upgrade for Run 4

For more information Join: talk from Bong-Hwi Lim: Design and expected performance of the ALICE ITS3 tracker upgrade (next talk) Read: <u>TDR ALICE ITS3</u>

IRIS system:

• Full scale prototypes are being developed

R&D for the Outer tracker

2x 129 cm

-80 -70 -60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 Enveloppe Reny, up, R = 72.5 cm $(\eta = 1.47)$ Enveloppe $R_{env,dwn}$, R = 7.0 cm $(\eta = 3.76)$ $\eta = 1.5 [r = 70.45 cm]$ $\eta = 2.0 [r = 41.36 cm]$ 30 20 $\eta = 2.5 [r = 24.79 cm]$ 10 $\eta = 3.0 [r = 14.97 cm]$ y (cm) 0 n = 3.5 [r = 9.07 cm]-10n = 4.0 [r = 5.50 cm]-20 $\eta = 4.5 [r = 3.33 cm]$ -30 $\eta = 5.0 [r = 2.02 cm]$ -40 -50 allowed R_{in} , R = 5.0 cm -60 $(\eta = 4.09)$ -70 Disk(OT-06), z = 150 cm allowed R_{out} , R = 68 cm (n = 1.53)-80 -70 -60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 x (cm

Outer Tracker mechanical layout and cooling concept (air or water) under study

Outer tracker end caps with disks:

- "Paving" with modules
- Mechanical layout, carbon-fibre support

ALICE

Goal: Discriminate between the different regimes of energy loss in the QGP and reveal possible charm isotropization by diffusion

Measurement: Azimuthal angular correlations between fully-reconstructed charm hadron pairs over a wide rapidity range

Method: Low p_{T} angular D^{0} - $\overline{D^{0}}$ correlations

Cas van Veen (they/them), Physikalisches Institut Heidelberg

Heavy-flavor correlations

Detector requirements:

- Large pseudorapidity coverage
- Low $p_T D^0 \overline{D^0}$ measurements which call for excellent background reduction down to $p_T = 1 \text{ GeV/c}$
- High statistics -> Interaction rate and read-out rate

Background reduction from the TOF (low p_T) and RICH (larger p_T) is critical to obtain pure samples of D⁰.

Analytical calculations of the η - pT regions in which particles can be separated by at least 3 σ for the ALICE 3 particle-identification systems embedded in a 2.0 T magnetic field.

ALICE 3 Lol, arXiv:2211.02491

RICH R&D

Cherenkov angle of pions and **ALICE** protons: 4 mrad angular resolution

Testbeam in Oct '23 at CERN PS

- Aerogel radiator by Aerogel Factory LTD (Japan)

- 8x8 SiPM matrices from HPK and FBK, various pixel sizes

Time-of-flight R&D

ALICE

Time resolution target: 20 ps Several test beams since 2022, various sensor options:

- SiPM coated with different resins (type, thickness)
- Single and double LGADs 20 μ m, 25 μ m, 35 μ m thick
- 50 μm thick CMOS-LGAD (ARCADIA MAPS with gain layer) and with integrated FEE (MADPIX)

Target resolution achieved on individual sensor Small dependence on track inclination

Goal: Confirm presence of chiral symmetry restoration in the QGP at sufficiently high energies

Measurement: Modification of the ρ and all mass spectrum in the medium because chiral symmetry breaking generates masses in QCD. Large mass difference between ρ (770 MeV) and al (1260 MeV) in the QCD vacuum.

Method: Measure the dilepton mass spectrum close to the ρ peak. Change of 15% is expected

When chiral symmetry is restored in QGP the mixing of the ρ and a₁ degenerates occurs

ρ and a, spectral function

P.M. Hohler and R. Rapp, PLB 731, 103

Measure in the range between the ρ (770 MeV) and ϕ (1019 MeV) peak. This is where the 15% increases becomes visible.

P.M. Hohler and R. Rapp, PLB 731, 103

ALICE 3 Lol, arXiv:2211.02491

ALICE

Cas van Veen (they/them), Physikalisches Institut Heidelberg

Goal: Conclusively verify the Low theorem, the violation of which would lead to a crisis in theory. The Low theorem can be used to test the infrared limits of quantum field theories such as QED, QCD and quantum gravity.

Measurement: Low's theorem predicts a $1/p_T$ dependence of the ultra-soft photon spectrum as a direct consequence of the conservation of electric charge.

Method: Measure the soft photon spectrum in the forward direction down to a few MeV/c via the conversion to e+e- pairs.

Ultra-soft photons and tests of quantum field theories

Detector requirements:

- Dedicated forward conversion tracker (FCT) with a separate dipole magnet to improve tracking in the forward direction
- Low material budget in front of the FCT
- Dedicated particle identification system behind the FCT
- 11 consecutive silicon discs with monolithic pixel trackers
- Pseudorapidity coverage: $4 < \eta < 5$
- Dipole magnet with a magnetic field of 0.25 T
- PID for e^+/e^- event veto

Ultra-soft photons and tests of quantum field theories

Detector requirements:

- Dedicated forward conversion tracker (FCT) with a separate dipole magnet to improve tracking in the forward direction
- Low material budget in front of the FCT
- Dedicated particle identification system behind the FCT

To achieve its physics goals, ALICE 3 will have

- An unprecedented spatial and DCA resolution from the retractable Vertex Detector
- Large pseudorapidity coverage |η| < 4 thanks to the barrel and end caps layout
- Very low material budget for the all-silicon inner and outer trackers
- High readout capabilities 24 MHz in pp
- Comprehensive **particle identification capabilities** thanks to the RICH, TOF and MID

R&D is well on its way and the building of prototypes has started.

To learn more about the physics program of ALICE 3 I invite you to have a look at the Letter of Intent ALICE 3 LoI, arXiv:2211.02491

Backup

Cas van Veen (they/them), Physikalisches Institut Heidelberg

	2023		2		2025				2026				2027				2028				2029				2030				2031				2032				20	33	3 2034			034		
	Run 3							LS3											Run							4													LS4					
	Q1 Q2 Q3	Q4	Q1 Q	2 Q3	Q4	Q1	Q2	Q3	Q4	Q1 (Q2 C	3 Q	4 Q	1 0	2 Q	3 Q4	4 Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3 (24	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
ALICE 3	Scoping Docume WGs kick	g ent, coff	Selection of technologies, R&D, concept prototypes						R&D, TDRs, engineered prototypes										Construc				tion							Contin			enc niss	y a ion	nd iing			Installation an commissionin			d g			

- **2023-25** : Scoping Document, selection of technologies, small-scale prototypes (~25% of R&D funds)
- **2026-27** : Large-scale engineered prototypes (~75% of R&D funds) → TDRs and MoUs
- **2028-30** : Construction and testing
- **2031-32** : Contingency and pre-commissioning
- **2033-34** : Preparation of cavern, installation
- **2035-41** : Data taking

Heavy-flavor correlations

Detector requirements:

- Large pseudorapidity coverage
- Low $p_T D^0 \overline{D^0}$ measurements which call for high selection efficiency down to $p_T = 1 \text{ GeV/c}$
- High statistics -> Interaction rate and read-out rate

Chiral symmetry restoration

Detector requirements:

- Electron identification
- High resolution vertexing capabilities

Measure in the range between the ρ (770 MeV) and ϕ (1019 MeV) peak. This is where the 15% increases becomes visible.

IRIS Tracker + Outer tracker for the tracking

RICH + TOF for the electron identification

ECAL: Jet and gamma performance

ECal can measure photons with x10 larger acceptance than ALICE 2 (EMCal) Photon can be correlated with charged-jets in |eta|<4 (exploiting ALICE 3 tracker acceptance)

Uniqueness:

- Wrt ATLAS/CMS: low p_T
 - p_{Tjet}>10 GeV in ALICE 3 (same ALICE), vs 50 in ATLAS/CMS
 - p_{Tgamma}>10-20 GeV in ALICE 3, vs 50 in ATLAS/CMS

Wrt ALICE 2: x10 larger acceptance for the photon (EMCal vs ECal), x2 larger L_{int}, ch. jets in |eta|<3.6 vs |eta|<0.5

Projections for recoil jet ${\rm R}_{\rm AA}$ and ${\rm I}_{\rm AA}$

ECAL: Jet and gamma performance

ECal can measure photons with x10 larger acceptance than ALICE 2 (EMCal) Photon can be correlated with charged-jets in |eta|<4 (exploiting ALICE 3 tracker acceptance)

Uniqueness:

- Wrt ATLAS/CMS: low p_T
 - p_{Tjet}>10 GeV in ALICE 3 (same ALICE), vs 50 in ATLAS/CMS
 - p_{Tgamma}>10-20 GeV in ALICE 3, vs 50 in ATLAS/CMS

Wrt ALICE 2: x10 larger acceptance for the photon (EMCal vs ECal), x2 larger L_{int}, ch. jets in |eta|<3.6 vs |eta|<0.5

Projections for recoil jet R_{AA} and I_{AA}

Multi-charm baryons, p-wave quarkonia and exotic hadrons

Detector requirements:

Hadron identification over a wide p_{τ} range (few hundred MeV/c to a few GeV/c)

Outerhade

PT

^Ld 0.14

0.12

0.04

- Tracking close to interaction point (5 mm)
- High readout rates (>100 kHz Pb-Pb and 24 MHz pp)
- Large acceptance $(|\eta| < 4)$

