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ALICE 3 - A short overview of the physics program

Muon chambers

Absorber Magnet
ECAL

RICH

Tracker
Vertex detector

TOF

FCT

● High-precision beauty measurements

● Multi-charm baryons, P-wave quarkonia, 
exotic hadrons

●         azimuthal correlations

● QGP thermal radiation

● Chiral symmetry restoration

● Fluctuations of conserved charges

● Ultra-soft photons and tests of quantum 
field theories

● And more, see Letter of Intent arXiv: 2211.02491

New detector for LHC Runs 5&6

https://arxiv.org/abs/2211.02491
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Multi-charm baryons, p-wave quarkonia and exotic hadrons

Goal: Establish connection between the thermalisation of charm quarks in the QGP and 
the formation of hadrons from deconfined quarks

Measurement: Measure the production of multi-heavy-flavor hadrons (like       ,         and 
ideally         ) and p-wave quarkonia (           ). Investigate dependence of the production of 
multi-heavy-flavor hadrons on the heavy-quark density that varies with rapidity

Method: Track all decay products, such as       and       hyperons, before they decay further 
(„strangeness tracking“)

4

A Andronic et al, 
JHEP 07 (2021) 035

Note: Adaptations made to show 
capabilities of ALICE 3

https://link.springer.com/article/10.1007/JHEP07(2021)035
https://link.springer.com/article/10.1007/JHEP07(2021)035
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Multi-charm baryons, p-wave quarkonia and exotic hadrons

Detector requirements: 
- Hadron identification over a wide pT range (few hundred MeV/c to a few GeV/c)
- Tracking close to interaction point (first layer at 5 mm)
- High readout rates (>100 kHz Pb-Pb and 24 MHz pp)
- Large acceptance (|η| < 4)
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Multi-charm baryons, p-wave quarkonia and exotic hadrons

- Large coverage: |η| < 4
- Sensor pixel pitch ~ 50 μm 
for σPOS ≈ 10 μm
- Very low material: ~1% X0 / 
layer
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Detector requirements: 
- Hadron identification over a wide pT range (few hundred MeV/c to a few GeV/c)
- Tracking close to interaction point (5 mm)
- High readout rates (>100 kHz Pb-Pb and 24 MHz pp)

- Large acceptance (|η| < 4)

Vertex detectorMiddle layers

Inner TOF

Outer t
racker
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Multi-charm baryons, p-wave quarkonia and exotic hadrons
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Multi-charm baryons, p-wave quarkonia and exotic hadrons

- Retractable: r0 = 5 mm
- Material budget: 0.1% X0 / layer
- Unprecedented spatial resolution: 2.5 μm
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Detector requirements: 
- Hadron identification over a wide pT range (few hundred MeV/c to a few GeV/c)
- Tracking close to interaction point (5 mm)
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R&D for the Inner Tracker

IRIS system:
● Full scale prototypes are 

being developed

ITS3 engineering model 2
Sensor R&D leverages on ALICE ITS3 
upgrade for Run 4

For more information
Join: talk from Bong-Hwi Lim:

Design and expected performance of the
ALICE ITS3 tracker upgrade (next talk)

Read: TDR ALICE ITS3 

https://cds.cern.ch/record/2890181
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R&D for the Outer tracker

80 cm

2x 129 cm

Outer tracker end caps with disks: 
- “Paving” with modules
- Mechanical layout, carbon-fibre support

68 cm

11

Outer Tracker mechanical 
layout and cooling concept 
(air or water) under study



Cas van Veen (they/them), Physikalisches Institut Heidelberg

Heavy-flavor correlations

Goal: Discriminate between the different regimes of energy loss in the QGP and reveal 
possible charm isotropization by diffusion

Measurement: Azimuthal angular correlations between fully-reconstructed charm hadron 
pairs over a wide rapidity range

Method: Low pT angular             correlations

ALICE 3 LoI, arXiv:2211.02491

Charm azimuthal correlations

M Nahrgang et al, PRC 90, 024907

12

   ALICE 3 Current ALICE

https://arxiv.org/abs/2211.02491
https://journals.aps.org/prc/abstract/10.1103/PhysRevC.90.024907
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Heavy-flavor correlations

Background reduction from the TOF (low pT) and RICH (larger pT) is critical to obtain pure 
samples of D0. 
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Analytical calculations of 
the η − pT regions in 
which particles can be 
separated by at least 3σ 
for the ALICE 3 
particle-identification 
systems embedded in a 
2.0 T magnetic field.

ALICE 3 LoI, arXiv:2211.02491

Detector requirements: 
- Large pseudorapidity coverage
- Low pT                       measurements which call for excellent background reduction down to pT = 1 GeV/c 
- High statistics -> Interaction rate and read-out rate

e/ⲡ     K/ⲡ     p/K

https://arxiv.org/abs/2211.02491
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RICH R&D
Cherenkov angle of pions and 
protons: 4 mrad angular resolution

Testbeam in Oct ‘23 
at CERN PS

- Aerogel radiator by 
Aerogel Factory LTD 
(Japan) 

- 8x8 SiPM matrices from 
HPK and FBK, various 
pixel sizes

Projective layout to minimise surface
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Time-of-flight R&D
Time resolution target: 20 ps 
Several test beams since 2022, 
various sensor options:

- SiPM coated with different resins 
(type, thickness)

- Single and double LGADs 20 𝜇m, 
25 𝜇m, 35 𝜇m thick

- 50 𝜇m thick CMOS-LGAD 
(ARCADIA MAPS with gain layer) 
and with integrated FEE (MADPIX)

LGAD track angle scan

Target resolution achieved 
on individual sensor
Small dependence on 
track inclination

Inclined LGAD
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Chiral symmetry restoration

Goal: Confirm presence of chiral symmetry restoration in the QGP at sufficiently high 
energies

Measurement: Modification of the ⍴  and a1  mass spectrum in the medium because chiral 
symmetry breaking generates masses in QCD. Large mass difference between ⍴  (770 MeV) 
and a1 (1260 MeV) in the QCD vacuum.

Method: Measure the dilepton mass spectrum close to the ⍴ peak. Change of 15% is 
expected

16
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Chiral symmetry restoration

When chiral symmetry is restored in QGP
the mixing of the ⍴ and a1 degenerates occurs

     

17

P.M. Hohler and R. Rapp, PLB 731, 103 

 ⍴ and a1 spectral function

https://arxiv.org/abs/1311.2921
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Chiral symmetry restoration

Measure in the range between the ⍴ (770 MeV) 
and ɸ (1019 MeV) peak. This is where the 15%  
increases becomes visible. 
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P.M. Hohler and R. Rapp, PLB 731, 103 

 ⍴ and a1 spectral function

ALICE 3 LoI, arXiv:2211.02491

https://arxiv.org/abs/1311.2921
https://arxiv.org/abs/2211.02491
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Ultra-soft photons and tests of quantum field theories

Goal: Conclusively verify the Low theorem, the violation of which would lead to a crisis in 
theory. The Low theorem can be used to test the infrared limits of quantum field theories 
such as QED, QCD and quantum gravity.

Measurement: Low’s theorem predicts a 1/pT dependence of the ultra-soft photon 
spectrum as a direct consequence of the conservation of electric charge.

Method: Measure the soft photon spectrum in the forward direction down to a few MeV/c 
via the conversion to e+e- pairs. 

Higher order 
corrections

Non-radiative 
charged particle 
production

Outgoing particle: +1
Incoming particle: -1

Photon 
polarization 
4-vector

Charged 
particle 
4-vector

Charge

19
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Ultra-soft photons and tests of quantum field theories

Detector requirements: 
- Dedicated forward conversion tracker (FCT) with a separate dipole magnet to improve 

tracking in the forward direction
- Low material budget in front of the FCT
- Dedicated particle identification system behind the FCT

- 11 consecutive silicon discs with      
       monolithic pixel trackers

- Pseudorapidity coverage:

- Dipole magnet with a magnetic    
      field of 0.25 T

- PID for e+/e- event veto

20
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Ultra-soft photons and tests of quantum field theories

Detector requirements: 
- Dedicated forward conversion tracker (FCT) with a separate dipole magnet to improve 

tracking in the forward direction
- Low material budget in front of the FCT
- Dedicated particle identification system behind the FCT

Signal 
with 1/pT 
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Summary

To achieve its physics goals, ALICE 3 will have
- An unprecedented spatial and DCA resolution from the retractable Vertex Detector
- Large pseudorapidity coverage |η| < 4 thanks to the barrel and end caps layout
- Very low material budget for the all-silicon inner and outer trackers
- High readout capabilities 24 MHz in pp
- Comprehensive particle identification capabilities thanks to the RICH, TOF and MID

R&D is well on its way and the building of prototypes has started. 

To learn more about the physics program of ALICE 3 
I invite you to have a look at the Letter of Intent 

ALICE 3 LoI, arXiv:2211.02491

https://arxiv.org/abs/2211.02491
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Backup
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ALICE 3 - Timeline

● 2023-25  : Scoping Document, selection of technologies, small-scale prototypes 
(~25% of R&D funds)

● 2026-27 : Large-scale engineered prototypes (~75% of R&D funds)  → TDRs and MoUs

● 2028-30 : Construction and testing

● 2031-32  : Contingency and pre-commissioning

● 2033-34 : Preparation of cavern, installation

● 2035-41  : Data taking
24
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Heavy-flavor correlations

Detector requirements: 
- Large pseudorapidity coverage
- Low pT                       measurements which call for high selection efficiency down to pT = 1 GeV/c 
- High statistics -> Interaction rate and read-out rate

25

Magnet fRICH

fTOF

Barrel RICH

Inner TOF

Outer TOF

High purity for D0 measurements. 

ALICE 3 LoI, arXiv:2211.02491

D0 candidate 
selection with IRIS 
and Outer tracker.

PID selection with 
RICH and TOF

https://arxiv.org/abs/2211.02491
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Chiral symmetry restoration

Detector requirements: 
- Electron identification 
- High resolution vertexing capabilities

Electron ID

26

Measure in the range between the ⍴ (770 MeV) and 
ɸ (1019 MeV) peak. This is where the 15%  increases 
becomes visible. 

IRIS Tracker + Outer tracker for the tracking

RICH + TOF for the electron identification

ALICE 3 LoI, arXiv:2211.02491

https://arxiv.org/abs/2211.02491
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ECAL: Jet and gamma performance

ECal can measure photons with x10 larger
acceptance than ALICE 2 (EMCal)

Photon can be correlated with charged-jets in
|eta|<4 (exploiting ALICE 3 tracker
acceptance)

Uniqueness:
● Wrt ATLAS/CMS: low pT

○ pTjet>10 GeV in ALICE 3 (same 
ALICE), vs 50 in ATLAS/CMS

○ pTgamma>10-20 GeV in ALICE 3, vs 50 
in ATLAS/CMS

Wrt ALICE 2: x10 larger acceptance for the
photon (EMCal vs ECal), x2 larger Lint, ch.
jets in |eta|<3.6 vs |eta|<0.5

Projections for recoil jet RAA and IAA
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Multi-charm baryons, p-wave quarkonia and exotic hadrons
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