Hard Probes 2024

LHCb Upgrade II and heavy-ion physics

Samuel Belin on behalf of the LHCb Collaboration

Samuel Belin <u>samuel.belin@cern.ch</u>

LHC-LHCb Schedule

Goal of Upgrade I and II: keep up the performance with the increased instantaneous luminosity and pile-up

The LHCb detector run 2

Excellent tracking and PID performance in fixed target, *pp* and *p*Pb collisions, but...

Samuel Belin <u>samuel.belin@cern.ch</u>

Samuel Belin <u>samuel.belin@cern.ch</u>

Heavy ion program profit greatly from this upgrade with now reaching 30% centrality

5

Samuel Belin <u>samuel.belin@cern.ch</u>

LHCb run 3

with now reaching 30% centrality

Samuel Belin <u>samuel.belin@cern.ch</u>

Heavy ion program profit greatly from this upgrade with now reaching 30% centrality

LHCb Upgrade II

Samuel Belin <u>samuel.belin@cern.ch</u>

CERN-LHCC-2021-012

Upgrade for pp requirement

- Instanteneous luminosity $1.5 \times 10^{34} cm^{-2} s^{-1}$
- Pile Up factor ~ 42
- 1500 to 3500 charged particles produced per bunch crossing.
 Basically a PbPb collision!

Heavy ion program will profit greatly from this upgrade ! No saturation of the detector and excellent efficiency to 0% centrality PbPb

Tracking system

CERN-LHCC-2021-012

- * The tracking system will be improved a lot
- * New VELO
- * Upgraded SciFi with silicon pixel Mighty Tracker in the inner part
- Upgraded Sci-Fi
- Addition of Magnet stations for low momentum charged particle

New VELO Design

- Better shielding for radiation hardness.
- resolution
- Overall better granularity of the detector will benefit the heavy-ion program.

* Design improved from last VELO. Smaller pixel size, reduced sensor silicon thickness.

* Excellent timing to assign each track to the correct primary vertex (PV). Below 20 ps time

Aligned time [ns] -0.070-0.075 -0.080 -0.085 -0.090

Upstream Tracker (UT)

- * Improves track matching between VELO and Forward Tracker
- * Reduces a lot the ghost rate

CERN-LHCC-2021-012

Detector based on CMOS MAPs (Monolithic Active Pixel Sensors)

* Scintillating Fiber and CMOS MAPs close to the beam

Better tracking for central PbPb collisions

CERN-LHCC-2021-012

First estimation of detector performance

High precision for central collisions!

- * Scintillators inside the magnet and photomultipliers outside
- * Better acceptance and low-p_T reach

Design Magnet Stations

coils

R&D officially supported by LHCb, but not included in the UII plans yet

- Improved SMOG2 system
- * Can work with or without polarized target
- * When polarized target only hydrogen and deuterium
- * Work in parallel of the collider mode -> high statistic

LHCSpin

BeamGas interaction

BeamBeam interaction

What does it mean for the heavy-ion physics program?

- * After interesting discussion with the theory community during a *workshop*, we pinned down flagship measurements
- * Most of them will take advantage of a fully operational detector for PbPb collisions in the forward region but obviously the improvement will benefit smaller system (lower $p_{\rm T}$ reach, better precision , pile-up in pA)
- * We considered ~10 nb^{-1} luminosity for PbPb during run 5-6, so we expect a large production of *c* and *b* particles

Equation of State of QGP

From relativistic hydrodynamic

 $dN_{ch}/dy \leftrightarrow Entropy \ density$ $< p_{\rm T} > of Charged particle \leftrightarrow T^{eff}$

Equation of State of QGP

A LHCb projection on the speed of sound for different temperatures ^{ری} 0.32 LHCb projection PbPb, $\sqrt{s_{NN}} = 5.44 \text{ TeV}$, 10 nb⁻¹ Lattice QCD, Phys. Rev. D 90, 094503 0.3F 0.28 0.26 LHCB-FIGURE-2024-026 0.24 0.22 0.2 0.18 0.16 200 250 150 $T_{\rm eff}$ [MeV]

300 17

- Many study as a function of measured temperature!
 - Quarkonia suppression
 - * Jet quenching
 - * Link between temperature and hadronisation?

Quarkonia suppression

- * Use bottomonia to study the QGP temperature through colour screening
- Much less recombination than for charmonia
- * However, η_c , $\chi_{c,b}$ production might be better understood in the reference *pp* collisions.
- * LHCb's robust PID and high statistic in PbPb collisions will make η_c , $\chi_{c,b} R_{PbPb}$ measurements possible!

Excellent resolution, no overlap between states

Heavy Flavor and Hadronisation

- Measurement of heavy flavor baryon-to-meson ratio to study hadronization mechanisms. *
- * The description of this mechanisms still at his beginning and more experimental results are needed as discrepancy in pPb and PbPb between ALICE and LHCb is not yet understood.

Exotica particles

- * Thanks to its PID capabilities and b vertex identification, LHCb discovered many exotic states.
- Most of those states are considered to be made of 4 quarks wether in a compact or molecular form.
- * Yield of $\chi_{c1}(3872)$ in a hot medium will depend on its hadronisation (increased yield if coalescence...)

Projection done without the inclusion of the Magnet Station

Exotica particles

- * Thanks to its PID capabilities and b vertex identification, LHCb discovered many exotic states.
- Most of those states are considered to be made of 4 quarks wether in a compact or molecular form.
- * Yield of $\chi_{c1}(3872)$ in a hot medium will depend on its hadronisation (increased yield if coalescence...)

Projection done without the inclusion of the Magnet Station

Electromagnetic probes

Reach low transverse momentum photon thanks to the Magnet Stations and photon conversion

LHCSpin

- * Unique system complementary to future EIC
- * Study non perturbative parameters in TMDs with Drell Yan and heavy quarks
- * Measure η_c in different polarization configuration

LHCSpin

Nuclei structure

- pile-up for *p*A collisions
- isolation measurement using the Magnet Station

* High statistic pA collisions will be also crucial to study saturation effect in the forward direction. In particular if the Upgrade II allows to have

* High statistic as well for exclusive measurement in *p*Pb and PbPb

Partonic distribution in small system collision thanks to low-p_T photon

Conclusion

- hadronization.
- the future EIC.
- A public note is being prepared

* The upgrade II of the LHCb detector will unlock high precision heavy-ion physics in the forward direction, making it an unique detector to study mechanisms of saturation, thermalization, and

* The addition of the LHCSpin will unlock many studies to understand nuclear structure distribution, showing great complementarities to