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Correlation functions for quarkonium formation and dissociation in the QGP
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Heavy quarks in pNRQCD
A pair of heavy quarks withmassM and relative velocity v, under the hierarchy
M � Mv � Mv2, and assuming that the size of their bound states is smaller
than the typical energy scale of the medium Mv � T, can be described by the
following Lagrangian:

LpNREFT = L(light d.o.f.)
QCD

+

∫
d3r Tr

[
S†(i∂0 − Hs)S +O†(iD0 − Hadj)O (1)

− VA(O
†ri gEi S + h.c.) − VB

2
O†{ri gEi,O} + · · ·

]
,

where S is the annihilation operator for a heavy quark pair in a color singlet
state, and O that of a heavy quark pair in a color octet state. ri is the relative
position between the heavy quark pair.

Correlation functions for

quarkonium transport
The above Lagrangian can be used to derive evolution equations for quarko-
nium using the formalism for open quantum systems. What one needs to
calculate from the light QCD degrees of freedom are the following chromo-
electric field correlators:
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which describe quarkonium dissociation and formation processes. They can
all be determined through the spectral function

ρ++
adj

(ω) = [g++
adj

]>(ω) − [g−−
adj

]>(−ω) . (4)
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Figure 1. Spectral function ρ++
adj

calculated at NLO in weakly coupled QCD [1] compared with

the strongly coupled calculation in N = 4 SYM [2].
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The importance of

non-Markovian effects
The main feature in Figure 1 is that the spectral function becomes more asym-
metric as the coupling is increased, with the extreme case showcased by the
N = 4 result, where ρ++

adj
(ω ≤ 0) = 0. This has dramatic consequences for

our understanding of currently available pNRQCD-based transport descrip-
tions [3]:

In the Quantum Brownian motion limit, dissociation and recombination are
controlled by the value of the limit limω→0 ρ++

adj
(ω)/ω. This limit vanishes in

N = 4 SYM. It remains to be seen what this limit is from a lattice QCD
calculation of the Euclidean counterpart of [g++

adj
]> [4].

In the Quantum Optical limit, dissociation and recombination are
controlled by the value of ρ++

adj
(−|∆E|), where ∆E is the energy difference

between the quarkonium states involved in the transition. This vanishes in
N = 4 SYM. A lattice QCD calculation of the Euclidean counterpart of
[g++
adj

]> has the potential to characterize the asymmetry of ρ++
adj

[4].

Both of the above descriptions are expansions around certain kinematic limits,
which assume that the dynamics of quarkonium as an open quantum system
is local in time (i.e.,Markovian), and that memory (i.e., non-Markovian) effects
are negligible compared to them. Our strongly coupled result in N = 4 SYM
shows that non-Markovian effects are not negligible at strong coupling.

Figure 2 compares the total regeneration probability of a Υ(1S) state using the
different correlation functions we have calculated. The (weakly coupled) QCD
curves contain both Markovian and non-Markovian effects, while the N = 4
curve contains only non-Markovian effects. This Figure indicates that assum-
ing Markovian dynamics might lead one to overestimate the dissociation/re-
combination rates.
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Figure 2. Regeneration probability for the Υ(1S) state with a Karsch-Mehr-Satz potential
model on a background temperature given by Bjorken flow T ∝ τ−1/3.

Outlook
A transport formalism that includes non-Markovian effects is needed to de-
scribe quarkonium in QGP. We are working on this. Stay tuned!
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