

Recent studies of open charm production at LHCb

Yiheng Luo (on behalf of the LHCb collaboration)

12th International Conference on Hard and Electromagnetic Probes of High-Energy Nuclear Collisions

1. Introduction

- Cold nuclear matter effects are dominant in *p*Pb collisions
 - Modification of nuclear parton distribution functions (nPDFs)
 - Other initial/final state effects
- Open charm productions precisely constrain nPDFs within LHCb unique small-x and mid-x coverages and are sensitive to the charm quark hadronization mechanisms

4. Nuclear modification factors

- At forward rapidity
 - $> R_{pPb}(D^{0,+}, D_s^+)$: consistent with nPDFs and CGC (5.02 & 8.16TeV)
- At backward rapidity
 - $\geq R_{pPb}(D^{0,+}, D_s^+)$: lower than predictions (8.16TeV), possible other nuclear effects (final-state energy loss, multiple parton scattering...)

2. LHCb Detector and Datasets

- A single-arm forward spectrometer within the pseudo-rapidity range $2 < \eta < 5$; designed for studying particles with charm quarks down to low- $p_{\rm T}$
- Datasets $(D^{0,+}, D_s^+, \Lambda_c^+)$ and Ξ_c^+ collected in pPb collisions at $\sqrt{s_{NN}} = 5.02$ or 8.16TeV ➤ Rapidity coverage: $1.5 < y^* < 4.0$ (forward), $-5.0 < y^* < -2.5$ (backward) ➤ Luminosity: ~1.5nb⁻¹(5.02TeV, Run1), ~30nb⁻¹(8.16TeV, Run2)

5. Forward-backward ratios

- $R_{FB}(D^{0,+}, D_s^+, \Lambda_c^+)$: a slight y*dependence, consistent with nuclear shadowing. Cold nuclear matter effects are suggested
- $R_{FB}(\Xi_c^+)$: well described by nPDFs and no major final-state effects are indicated

5.02TeV JHEP 01 (2024) 070

8.16TeV PRC 109 044901 (2024)

3. Analysis Strategy • Differential cross-sections: $\frac{d^2\sigma}{dp_{\rm T}dy^*} = \frac{d^2\sigma}{dp_{\rm T}dy^*}$ $N(p_{\rm T}, y^{*})$ $\overline{\mathcal{L} \times \varepsilon(p_{\mathrm{T}}, y^{*}) \times \mathcal{B} \times \Delta p_{\mathrm{T}} \times \Delta y^{*}}$

 $\succ B$: branching fractions $\succ \mathcal{L}$: luminosity $\geq N(p_{\rm T}, y^*)$: prompt signal yields in $(p_{\rm T}, y^*)$ $\geq \Delta p_{\rm T}$ and Δy^* : width of transvers momenta and rapidity $\succ \varepsilon(p_{\rm T}, y^*)$: efficiency corrections

• Nuclear modification factors:

$$R_{pPb} = \frac{d^2 \sigma_{pPb} / dp_T dy^*}{208 \times \sigma_{pp} / dp_T dy^*}$$

• Forward-backward ratios:

$$R_{\rm FB}(p_{\rm T}, y^*) = \frac{d^2 \sigma_{\rm Forward}(p_{\rm T}, |y^*|; y^* > 0)/dp_{\rm T} dy^*}{d^2 \sigma_{\rm Backward}(p_{\rm T}, |y^*|; y^* < 0)/dp_{\rm T} dy^*}$$

• **Production ratios:**

 MeV/c^2

S

Candidates

$$R_{D_s^+/D^+} \equiv \frac{\mathrm{d}^2 \sigma_{D_s^+}}{\mathrm{d}^2 \sigma_{D^+}}, R_{\Lambda_c^+(\Xi_c^+)/D^0} \equiv \frac{\mathrm{d}^2 \sigma_{\Lambda_c^+(\Xi_c^+)}}{\mathrm{d}^2 \sigma_{D^0}}$$

- Background components are subtracted by invariant mass fitting
- Prompt yields $N(p_T, y^*)$ and secondary yields separated with impact parameter (IP) related variable $\log_{10}\chi_{IP}^2$ distribution

6. Production ratios

• $R_{D_s^+/D^+}$: first observation of strangeness enhancement with charmed mesons in highmultiplicity *p*Pb events, consistent with additional coalescence mechanism • $R_{\Xi_c^+/D^0}$: similar at forward and backward rapidity, but different trends compared to pp

• Total efficiency $\varepsilon(p_T, y^*)$ are calculated with Monte Carlo simulated samples

- Prompt open charm productions are studied with LHCb Run1 & Run2 data samples, constraining theoretical models
- Measured R_{pPb} , $R_{D_s^+/D^+}$ and $R_{\Xi_c^+/D^0}$ suggest the existence of CNM effects and possible changes in charm hadronization in *p*Pb collisions
- During Run3 data-taking, more precise charm measurements will be performed in LHCb *pp*, *p*Pb, and fixed-target collisions