Federica Zanone, Ruprecht-Karls-Universität Heidelberg on behalf of the ALICE Collaboration

Federica Zanone | federica.zanone@cern.ch

UNIVERSITÄT

1386

Probing charm hadronization

Parton distribution functions

Federica Zanone | federica.zanone@cern.ch

$\sigma_{AB \to H} = PDF(x_a, Q^2)PDF(x_b, Q^2) \otimes \sigma_{ab \to q\overline{q}}(x_a, x_b, Q^2) \otimes D_{q \to H}(z = p_H/p_q, Q^2)$

Hard scattering cross section

Fragmentation function (hadronization)

of different hadron species is

Testing universality of fragmentation functions

arXiv: 2105.06335

ALI-PUB-500750

Federica Zanone | federica.zanone@cern.ch

ALICE found a significantly larger fraction of charm quarks hadronising into baryons compared to leptonic collisions

Indication that hadronization process depends on collision system

Modeling hadronization

PYTHIA 8

Hadronization via **fragmentation**, color reconnection between partons from different multiparton interactions

Mode 2 the **junction** topology leads to an increase of baryon production JHEP 08 (2015) 003

SHM + RQM

Phys.Lett.B 795 (2019) 117-121 Phys.Rev.D. 84 (2011) 014025

- Complexity of hadronization process replaced by statistical weights governed by hadron mass
- Feed-down from largely augmented set of charm baryon stated beyond the ones currently listed in the PDG, as predicted by Relativistic Quark Model

Federica Zanone | federica.zanone@cern.ch

The ALICE experiment in Run 2

Federica Zanone | federica.zanone@cern.ch

Run 3

Federica Zanone | federica.zanone@cern.ch

Measurements in pp collisions

- Baryon-to-meson ratio shows a clear $p_{\rm T}$ dependence, with larger baryon production at low and intermediate $p_{\rm T}$
- PYTHIA 8 Mode 2, Catania, QCM and SHM+RQM successfully describe the data
- Measurements support the scenario of charm-quark hadronization in pp collisions via additional mechanisms than those in leptonic collisions

Measurement from e⁺e⁻ collisions: <u>Phys.Rev.Lett. 128 (2022) 012001</u>

Federica Zanone | federica.zanone@cern.ch

Predictions driven by charm-quark fragmentation processes measured in e^+e^- and e^-p collisions underestimate the data

Measurements in pp collisions

LI-PUB-567881

More about strangeness in heavy quark hadronisation in Fabio Catalano's talk

- Enhancement also in strange-charmbaryon-to-meson ratio in pp collisions
- **Poor description** from models successfully describing Λ_c^+/D^0 ratio, with theoretical predictions underestimating the data
- Catania model gets closer to data
- Coalescence even in pp collisions?
- Larger enhancement for strange-charm baryons?
- Large uncertainty of Ω_c^0 branching ratio limits the effectiveness of the comparison with theoretical models

$\Sigma_{c}^{0,++}$ in pp collisions

$\Sigma_{c}^{0,++}$ in pp collisions

Federica Zanone | federica.zanone@cern.ch

New constraint on model

- Available charm-quark hadronization models fail to describe experimental observations for Λ_c^+ ($\leftarrow \Sigma_c^{0,++})/\Lambda_c^+$
- In the PYTHIA fragmentation scenario, the suppression of $\Sigma_{\rm c}$ production relative to Λ_c is attributed to the need to form a junction containing a spin S = 1 charm-light diquark instead of S = 0- In PYTHIA 8 Mode 2 the amount of suppression is tuned by the
 - model parameter probQQ1toQQ0join charm $\rightarrow \Sigma_c$
 - measurements needed to tune the model

JHEP 08 (2015) 003 and arXiv : 2405.19137

Measurements in p-Pb collisions

- Similar magnitude in the enhancement of Λ_c^+/D^0 in pp and p-Pb collisions wrt e^+e^- collisions
- Shift of distribution peak towards higher $p_{\rm T}$ could be attributed to radial flow
- QCM describes the magnitude of the ratio and predicts the hardening of Λ_c^+ spectrum in p-Pb collisions

- Hint of enhanced Ξ_c^0/D^0 ratio in p–Pb collisions wrt pp collisions
- Higher precision needed to draw conclusions as done for Λ_c^+/D^0
- QCM underestimates Ξ_c^0 cross section and Ξ_c^0/D^0 by same amount

Measurements in Pb–Pb collisions

- - a peak increasing in magnitude and shifting towards higher $p_{\rm T}$ values
- Observed behaviour could be the result of modification of $p_{\rm T}$ spectra due to recombination and/or radial flow
- Theoretical calculations including both fragmentation and coalescence describe the measurements

Federica Zanone | federica.zanone@cern.ch

- Λ_c^+/D^0 ratio increases from pp to mid-central and central Pb–Pb collisions at intermediate p_T with a significance of 3.7 σ , with

Event multiplicity dependence

- Significant multiplicity-dependent enhancement of the Λ_c^+/D^0 ratio with a significance of 5.3σ for $1 < p_T < 12 \text{ GeV}/c$ from lowest to highest multiplicity class
- Measured Λ_c^+/D^0 ratio in the lowest multiplicity interval is higher than in e^+e^- collisions
- PYTHIA 8 Monash fails to describe the Λ_c^+/D^0 ratio, Mode 2 catches its trend but not the magnitude
- No strong multiplicity dependence of Ξ_c^0/D^0 with the current uncertainties

Event multiplicity dependence

Federica Zanone | federica.zanone@cern.ch

No multiplicity dependence of $p_{\rm T}$ integrated $\Lambda_{\rm c}^+/{
m D}^0$ ratio within the uncertainties

increase in baryon-to-meson ratio observed in the measured $p_{\rm T}$ range is likely to be due to a different $p_{\rm T}$ redistribution between meson and baryons rather than to an enhancement in the overall baryon yield

Charm fragmentation fractions

ALI-PUB-570972

Fragmentation fractions in pp and p-Pb collisions are consistent with each other

No modification of charm hadronization process due to different hadronic collision system size

Federica Zanone | federica.zanone@cern.ch

JHEP 12 (2023) 086

ALI-PUB-567906

Fragmentation fractions do not show energy dependence within the uncertainties

ALI-PERF-578561

Summary and outlook

Charm baryons have been measured in various collision systems, investigating the yield dependence on $p_{\rm T}$ and event multiplicity

- systems ascribable to recombination and/or radial flow
- Larger enhancement for **strange**-charm-baryons?
- Hint of different $p_{\rm T}$ redistribution between meson and baryons for different multiplicity classes
- collision **energy** within the uncertainties

- extended $p_{\rm T}$ reach

- improved precision

Better understanding of charm and beauty hadronization

Federica Zanone | federica.zanone@cern.ch

- Charm-quark hadronization in parton rich environments happens via additional mechanisms wrt leptonic collisions - Larger enhancement at low and intermediate $p_{\rm T}$, hardening of baryon-to-meson ratio distribution in larger collision

- Charm fragmentation fractions do not show a dependence neither on the hadronic collision system size nor on the

Large Run 3 statistics

- increased measurements granularity

new particles now accessible at the LHC

More about beauty in Andrea Tavira Garcia's talk

SHM + RQM

SHM + RQM

Phys.Lett.B 795 (2019) 117-121 Phys.Rev.D. 84 (2011) 014025

- Complexity of hadronization process replaced by statistical weights governed by the hadron mass
- Feed-down from a largely augmented set of charm baryon stated beyond the ones currently listed in the PDG
- The Relativistic Quark Model predicts the existence of a set of excited charm baryons using a relativistic description of a bound object composed of a heavy quark and a light diquark

Federica Zanone | federica.zanone@cern.ch

CHARM BARYONS

- PDG: 6 Λ_c , 3 Σ_c , 8 Ξ_c , 2 Ω_c
- RQM: extra 18 Λ_c , 42 Σ_c , 62 Ξ_c , 34 Ω_c (up to a mass of 3.5 GeV/c)

Phys.Rev.D. 84 (2011) 014025

Charm baryons decay channels measured by ALICE

Charge conj. included for all the measured hadrons

Federica Zanone | federica.zanone@cern.ch

 $\Omega_{\rm c}^0 \to \Omega^- \pi^+$ $\Omega_{\rm c}^0 \to \Omega^- {\rm e}^+ \nu_{\rm e}$

Baryon-to-baryon ratio in pp collisions

Federica Zanone | federica.zanone@cern.ch

- All the models underestimate the data

Baryon-to-baryon ratio in pp and p-Pb collisions

ALI-PUB-571015

- No significant $p_{\rm T}$ dependence both in pp and p-Pb collisions
- Results in pp and p-Pb collisions are compatible within the uncertainties
- Both QCM and PYTHIA 6 + POWHEG underestimate the data

Rapidity dependence of baryon-to-meson ratio

arXiv: 2405.14538

ALI-PUB-571019

- Hint of rapidity dependence
- Yield ratio at mid rapidity larger than measurements at forward and backward rapidities in the full $p_{\rm T}$ range (differences ranging from 1.5σ to 2.0σ)

Rapidity dependence of baryon-to-baryon ratio

ALI-PUB-571023

Comparison to theoretical models in Pb–Pb collisions

Federica Zanone | federica.zanone@cern.ch

Pb

SHM

- Consider only charm hadrons from PDG
- Core-corona approach

CATANIA

- QGP formation both in pp and p-Pb collisions
- Hadronization via coalescence or fragmentation
- Charm-quark transport via Boltzmann equation

TAMU

- Hadronization primarily via coalescence (Resonance Recombination Model), but fragmentation is also included
- Charm-quark transport via Langevin equation
- SHM approach for pp collisions

Multiplicity dependence and comparison to theoretical models

Federica Zanone | federica.zanone@cern.ch

arXiv: 2111.11948

- PYTHIA 8 Monash does not reproduce the Λ_c^+/D^0 ratio and does not show multiplicity dependence
- PYTHIA CR-BLC describes the Λ_c^+/D^0 decreasing trend with $p_{\rm T}$ and is closer to the overall magnitude
- SHM+RQM reproduces the multiplicity dependence

Multiplicity dependence and comparison to the oretical models

- No strong multiplicity dependence of Ξ_c^0/D^0 and Ξ_c^0/Λ_c^+ ratios within the uncertainties
- All PYTHIA 8 models underestimate the data
- Larger disagreement between PYTHIA CR-BLC prediction and data for Ξ_c^0/D^0 with respect to Λ_c^+/D^0 (slide 13)

Comparison to light-flavour hadrons

- Baryon-to-meson ratio in the charm sector are compared to those in the light-flavour sector
- Ratios show a similar trend as a function of $p_{\rm T}$ and similar enhancement with $< dN_{ch}/d\eta >$
- Hint at a possible common mechanism for light- and charmbaryon formation in pp collisions at LHC energies

Strange charm baryon branching ratios

Federica Zanone | federica.zanone@cern.ch

 $\Xi_{\rm c}^0$

Phys.Rev.Lett. 127 (2021) 272001

ALICE measurement

 $BR(\Xi_c^0 \to \Xi^- e^+ \nu_e) / BR(\Xi_c^0 \to \Xi^- \pi^+) = 1.38 \pm 0.14 \text{ (stat)} \pm 0.22 \text{ (syst)}$

Recent ALICE measurement of $\text{BR}(\Omega_c^0 \to \Omega^- e^+ \nu_e)/\text{BR}(\Omega_c^0 \to \Omega^- \pi^+)$

Theoretical prediction used for $\Omega_c^0 \to \Omega^- \pi^+$ analysis BR($\Omega_c^0 \to \Omega^- \pi^+$) = $(0.51^{+2.19\%}_{-0.31\%})\%$

Poor theoretical knowledge of Ω_c^0 BR

Tension between <u>BELLE</u> and <u>LHCb</u> BR fraction measurements for Cabibbo-suppressed decay channels BELLE: $BR(\Omega_c^0 \to \Xi^- \pi^+)/BR(\Omega_c^0 \to \Omega^- \pi^+) = 0.253 \pm 0.052 \text{ (stat.)} \pm 0.030 \text{ (syst.)}$ LHCb: $BR(\Omega_c^0 \to \Xi^- \pi^+)/BR(\Omega_c^0 \to \Omega^- \pi^+) = 0.1581 \pm 0.0087 \text{ (stat)} \pm 0.0043 \text{ (syst)} \pm 0.0015 \text{ (ext)}$

 Ω_c^0 dedicated software trigger will provide data to perform new measurements of BR fractions

Energy dependence in hadron production

ALI-PUB-567886

- Increasing trend going from low to high $p_{\rm T}$ for given hadron species
- dependence in baryon-to-meson ratios

Federica Zanone | federica.zanone@cern.ch

- Compatible $p_{\rm T}$ spectrum hardening between mesons and baryons from $\sqrt{s} = 5.02$ TeV to $\sqrt{s} = 13$ TeV \rightarrow no energy

