Decoding the composition of QCD matter with the polarization of thermal dileptons

Florian Seck, TU Darmstadt

in collaboration with B. Friman, T. Galatyuk, H. van Hees, R. Rapp, E. Speranza, J. Wambach

Motivation

- **Dilepton emission rate of thermal QCD matter** $\frac{dN_{ll}}{d^4x \, d^4q} = \frac{\alpha^2 L(M)}{6 \pi^3 M^2} f^B(q_0; T) g_{\mu\nu} \rho_{EM}^{\mu\nu}(M, |\vec{q}|; T, \mu_B) \text{ with } \rho_{EM}^{\mu\nu} = -2 \text{ Im } \Pi_{EM}^{\mu\nu}$
- Decomposition of spectral function (SF) with projectors for a spin-1 particle $P_{L,T}^{\mu\nu}$: $\rho_{EM}^{\mu\nu} = \rho_L P_L^{\mu\nu} + \rho_T P_T^{\mu\nu}$ with $g_{\mu\nu} \rho_{EM}^{\mu\nu} = \rho_L + 2\rho_T$
- Invariant mass spectra related to sum of longitudinal and transverse components of the spectral function
 - medium lifetime, temperature, electrical conductivity, EoS at high baryon densities

- Angular distribution of single lepton in γ^* rest frame depends on polarization of γ^* :
- $\frac{dN}{d^4 x \, d^4 q \, d\Omega} = \mathcal{N} \left(1 + \lambda_\theta \cos^2 \theta + \lambda_\varphi \sin^2 \theta \cos 2\varphi + \lambda_{\theta\varphi} \sin 2\theta \cos \varphi\right)$

- λ coefficients related to the **difference** between longitudinal and transverse SF components
 - Rotational symmetry of the medium broken by finite momentum $|\vec{q}|$ of the virtual photon
 - for a static thermal medium in the helicity frame: $\lambda_{\theta} = \frac{\rho_T \rho_L}{1}$ $\rho_T + \rho_L$
- Spin polarization allows to distinguish between different sources of thermal dileptons
 - Access production mechanism

Comparison with HADES data

- Measurement of λ_{θ} of excess radiation in the HX frame in Ar+KCl collisions at 1.76 AGeV beam energy
 - Space-time evolution via coarse-grained UrQMD
 - Polarization largely survives evolution of the expanding medium

Comparison with NA60 data

Polarization for static medium

- **Employ realistic in-medium SF**
- Strong dependence on mass, momentum and baryon density for hadronic medium
- Rather small polarization for QGP except for $M_{ee} < 0.5 \text{ GeV}/c^2$

- Measurement of λ_{θ} , λ_{ϕ} and $\lambda_{\theta\phi}$ of excess radiation in the CS frame in In+In collisions at 158 AGeV beam energy
 - Space-time evolution via isentropic fireball model with transition from QGP to hadronic rates at T=170 MeV
 - Near absence of a net polarization due to properties of the EM spectral function
- Strong dependence on the polarization frame as a function of invariant mass and momentum
- Good agreement between data and theory \rightarrow size and trend

Perspective for future measurements

Polarization observables play an important role in exploring the mechanisms underlying EM emission spectra in heavy-ion collisions

Dynamic medium in heavy-ion collisions

- Space-time evolution modeled via small fluid cells: coarse-grained **UrQMD** or fireball model
- Helicity frames (HX') of individual local fluid cells misaligned

- Multi-differential measurements of the virtual photon polarization
- Search for onset of QGP
- ρ -a₁ mixing vs. QGP around $M_{ee} \simeq 1.1 \text{ GeV}$
- Large datasets needed: CBM, NA60+ and ALICE 3
- Predictions for polarization in Ag+Ag at $\sqrt{s_{NN}} = 2.55$ GeV with HADES

