Lattice Simulation on $\Lambda_c N$ and $\Omega_{ccc} N$ interaction at physical point

Liang Zhang^{1,2}, Tetsuo Hatsuda¹, Takumi Doi¹

1. Interdisciplinary Theoretical & Mathematical Science Program (iTHEMS), RIKEN, Hirosawa, Saitama 351-0198, Japan

2. Shanghai Institute of Applied Physics, Chinese Academy of Science, Shanghai 201800, China

Introduction

The interactions between baryons, which are the key to understand the properties of hadronic matter, are important to particle physics and nuclear physics. A short-range and spin-orbit-dependent nucleon–nucleon (NN) interaction is proposed to describe low-energy nucleon–nucleon (NN) scattering data and the properties of finite nuclei¹. Hyperon–nucleon (YN) and hyperon–hyperon (YY) interactions can be used to reproduce hyperon–nucleon femotoscopy² and predict masses of hypernucleus³.

LQCD

better S/N

> The study of integrations between baryons still needs more lattice QCD calculations which depend on the strong interaction coupling constant and simulate the baryon-baryon interactions from first

principles with HAL QCD method.

The HAL QCD collaboration has calculated the Λ_cN interaction for m_π = 410 - 700 MeV⁴, while EFT theory has made some extrapolations of the system to the physical point. However, different EFT extrapolations present conflicting results⁵, particularly in the ³S₁ - ³D₁ coupled channel calculations. Therefore, it is crucial to compute the Λ_cN interaction at the physical point using LQCD.
 In 2020, the HAL QCD collaboration reported a bound state of NΩ based on LQCD calculations⁶. Later, the STAR⁷ and ALICE⁸ collaborations measured the NΩ femtoscopy correlation, which aligned with the HAL QCD calculations. This raises the natural question of whether NΩ_{ccc} could also form a bound state, potentially revealing s - c quark symmetry in future studies.

 [1] XT Lu, Nuclear Physics, 2000
 [2] S. Acharya et al., Nature 588, 232 (2020).
 [3] L. Zhang, S. Zhang, and Y.-G. Ma, Eur. Phys. J. C 82, 416 (2022).
 [4] T. Miyamoto, et al (2018). Nucl. Phys. A, 971, 113 (2018).

 [5] J. Haidenbauer & G. Krein arXiv:2101.07160v1 (2021).
 [6] T. Iritani et al, Phy. Let. B, 792, 284 (2019)
 [7] STAR Collaboration, Phys. Lett. B, 790, 490(2019)
 [8] S. Acharya et al, Nature, 588(7837), 232 (2020).

Conclusion & Future

$\Lambda_c N$ interaction

- ► There is a strong repulsive interaction between Λ_c and N, making the existence of Λ_c hypernuclei challenging
- Solution Both tensor force V_T and spin-dependent central force V_{σ} are relatively weak.
- $\Omega_{ccc}N$ interaction
 - In the $\Omega_{ccc}N$ system, there is no Pauli exclusion principle at the quark level, which is one reason the interaction is entirely attractive.
 - The combination of a deep attractive potential and the heavy Ω_{ccc} suggests the possibility of a deeply bound dibaryon

Outlook

- $\succ S D$ coupled channel calculation of $\Lambda_c N$
- > Calculate the binding energy of $\Omega_{ccc}N$ dibaryon
- Inspire researches on charmed baryon nucleon