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1. Introduction

* Transport model : approximation solution to Boltzmann Transport Equation.

2. Stochastic Collision Model

* Inter-particle collisions are calculated using stochastic method*
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Time evolution Dieusion External field Interparticle collision > Only allow interaction in the same cell. —

» Applicable to far-erom-equilibrium quark-gluon plasma. > Assume only 1 collision for each timestep.

* Bottom up approach to quark-gluon plasma thermal and chemical equilibration.
* Based on Hadronic transport model SMASH™ reconfigured for quark-gluon plasma

* Update particles
> Propagate particles in a straight line
(At assumed to be small enough to ignore force)

Ax=0.5fm _
At=1x10"°fm

l Goal : Create a redlistic initial condition generator model for hydr*odynamuc
. simulation with the minimum number of free parameters. l

> Update momentum based on

This allows simulation including

ap _ _ g4y xg>  Forthe sake of simplicity, multipartonic interactions
dt consider no external field
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* Initial condition (Glauber Model). * 2-to-2 Channels
Initial particles are £rom mini-3ets produced by binary collision between nucleons based on perturbative QCD up to tree level. B
- Particle number Includes 4 channels : gg <-> gg, 9q ¢<-> gq, dd.<-> 44, g9 <-> 4q

* 2-t0-3 Channels
based on improved Gunion-Bertsch approximation™!

4PCM

f dt d O Minidet cutoff @ 2 GeV

f d”x;dzdtn,(X;,z—vt)ng(%r, z+ve) with 0, and only until leading order

N= 4vo*

jet
Each collision produces 2 parton x 2 to include higher order perturbation
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 Momentum distribution

1o Includes gg <-» 999, dg <-> agqg, and dq <-> dqg extra channels
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With €, and €, partomc distribution function (NNPD¥2)
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* Infrared divergence regularization
based on dynamic colour-screening mass in the one-loop approximationt! in SU(3)
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* Coupling constant as fixed at 0.3 * Coupling constant as fixed at 0.3
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4. Chemical Equilibration 5. Thermalization

We consider 2 collision systems Number density * We define effective temperature as ratio between energy and particle number to
1) Pb-Pb @ 2.76 TeV 200 | | indicate thermalization

2) p-p @13 TeV 150 |\
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* Central collision for both systems o 13 Te

* Focusing only for mid-rapidity
region -0.5<n<0.5

* Number density for both quark
and gluons are understandably .
constantly decreasing for an - . . .
expanding medium S 1f AL - t (fm)

* Temperature is constantly decreasing due to the expanding medium
* Saturation behaviour can be seen well before 0.2 €m £or both collision systems

Pb+Pb 2.76 TeV
p+p 13 TeV
EE{:Itzmann

* Ratio between number of quarks |
and gluons saturates toward o I
Boltzmann limit between 1-2 &m

Summary and Future Prospect

Momentum isotropization is often used as the indicator for hydrodynamization

Momentum Anisotropy

* We constructed a partonic transport model using stochastic collision model with 2-to-2 and
2-to-3 interactions up until leading order.

| * The model has two parameters
> Mini det momentum cut-of€ =y affect initial condition parton number and total energy
> Coupling constant a.=> affect interaction rate
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P RNV oy et > Similar time evolution for both small and large system
This is probably due to the higher collision energy for the small system resulting in a high
enough multiplicity to give a similar evolution compared to the large system case.
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* Future application to heavy quark energy loss in quark gluon plasma.
Compare to theoretical predictions of heavy quark energy loss £rom both elastic* and
radiative** processes.
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Momentum isotropization is reached ~2 €m regardless o€ the system size

*Peigne and Peshier (arXiv:0802.4364
*R. Abir, U. Samil, M. G. Mustafa, D. K. Srivastava, Phys. Lett. B 715, 183 (2012).

* Error bar for p-p collision is not included since it’s too large
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