Investigating virtual photon polarization via $\gamma^* \rightarrow \mu \mu$ in Pb-Pb

at $\sqrt{s_{\rm NN}} = 2.76$ TeV by numerical calculation

<u>Kento Kimura^A, Nicholas J. Benoit^A, Ken-Ichi Ishikawa^A, Chiho Nonaka^{ABCD}, Kenta Shigaki^{AB}</u>

Advanced Science and Engineering Hiroshima Univ.^A, WPI-SKCM2 Hiroshima Univ.^B, Dept. of phys. Nagoya Univ.^C, KMI Nagoya Univ.^D

Strong magnetic field in high energy nuclear collision

<u>Generated strong magnetic field has 2 component</u> Electromagnetic probe

Prompt real/virtual photon is sensitive to strong magnetic field

- Generated in the initial stage
 - Compton scattering and annihilation
- Not to interact with strong interaction

Virtual photon polarization

- Virtual photons decay anisotropically into lepton pairs due to the strong magnetic field
 - Contribute up to $(eB/m^2)^n$ $(n \to \infty)$ to virtual fermion pairs in one-loop

Beam axis

K-I.Ishikawa et al.,

- lifetime of B generated by spectator ~ 0.1 fm/c
 - HIJING + Lienard-Wiechert potential
- Possibly be longer by QGP rotation - Observation of QGP rotation at STAR
- Predicted physics
 - Nonlinear QED (ex. vacuum birefringence, photon splitting)
 - Chiral magnetic effect
 - Quark's synchrotron radiation

Yet to be experimentally observed

Purpose

We numerically calculate virtual photon polarization as input the time evolution of the magnetic field with RRMHD to evaluate polarization measurability in Pb-Pb at $\sqrt{s_{\rm NN}} = 5.36 \,{\rm TeV}$

Time evolution

Calculate time evolution of the magnetic field in Pb-Pb at $\sqrt{s_{\rm NN}} = 2.76$ TeV with Relativistic resistive Magneto-HydroDynamics (RRMHD) Nakamura, K., Miyoshi, T., Nonaka, C. et al. Eur. Phys. J. C 83, 229 (2023).

	• •	Average of B_{y} in the energy
RRMHD		density $\epsilon_f > 0.15 \text{ GeV} \cdot fm^{-3}$
<u>Hydrodynamics</u>	<u>Maxwell's formula</u>	$\sum_{k=1}^{\infty} \sum_{k=1}^{k} \frac{10^2}{k}$
$\nabla_{\mu}N^{\mu} = 0$	$\nabla_{\mu}F^{\mu\nu} = -J^{\nu}$	Image: Second state Pb-Pb@2.76TeV, RRMHD

Dimuon Production rate J. Mod. Phys. A 28, 1350100 (2013 $R_{\mu^{+}\mu^{-}} = \frac{\alpha^{2}}{2\pi^{4}} \left(\left(-g^{\alpha\beta}q^{2} + q^{\alpha}q^{\beta} \right) C \right) \mathsf{D}_{\mu\alpha}(q,eB) \mathsf{D}_{\nu\beta}^{*}(q,eB) \mathsf{L}^{\mu\nu}(p_{1},p_{2})$ source Photon propagator $D_{\mu\nu}(q, eB) = -\frac{\iota}{a^2} [g^{\mu\nu} - \frac{1}{a^2} \Pi^{\mu\nu}(q, eB)]$

RRMHD is more realistic than RMHD

- electric conductivity: Infinity \rightarrow **Finite**

Double summation of landau level of virtual fermion pair in one-loop Set upper limit of landau level $(n_{max}, l_{max}) = (1000, 10000)$

0.2 fm/c

 $IeB_v I/m_{\pi}^2$

Calculation results of polarization in Pb-Pb at $\sqrt{s_{NN}} = 2.76$ TeV

Calculation condition

- Virtual photon decay into dimuon parallel (perpendicular) to the magnetic field
- $M_{\gamma^*} = 300 \text{ MeV}$
- $p_{\gamma^*} = (0, 0, p_{\gamma^*}), 0 < p_{\gamma^*} < 20 \, \text{GeV}/c$

Polarization increases monotonically with p_{γ^*}

- At $p_{\gamma^*} = 20 \text{ GeV}/c$, P is around 0.07
- Polarization is expected to be larger in higher p_{γ^*}

It is promising that different p_{γ^*} regions being measured could be sensitive to different times.

- In $\tau > 1.0$ fm/c, virtual thermal photons are expected to polarize
 - $p_{\gamma^* \tau}$ < 4 GeV/*c*, thermal photon is dominant

1.0 fm/c

Expected Polarization at ALICE

Muon detector

- Acceptance : $2.45 < |\eta| < 4.0$
- $p_T \approx 0.1 p_{\nu^*}$
- Yield of prompt virtual photon
 - Estimate #(prompt real photon) in Pb-Pb _ $at\sqrt{s_{NN}} = 2.76 TeV$ by pQCD
 - Estimate #(promt virtual photon) by

- Need technical improvement on the numerical calculation in
 - the higher photon moment
- Calculate time evolution in Pb-Pb at $\sqrt{s_{NN}} = 5.36$ TeV with RRMHD
- Measure virtual photon polarization with ALICE
- Need cut optimization to improve S/N