Perturbative & non-perturbative aspects of the multiplicity distribution in a jet Weiyao Ke, Pi Duan, Guang-you Qin, Central China Normal University

1. To understand jets with very high multiplicities

2. Multiplicity distribution and generating function

Let $P(n; \omega_J, R)$ be the probability that a parton with energy ω_J produces an exclusive jet of radius R and contain n particles in the cone. We define the multiplicity generating function Z(s) of exclusive jet as

$$egin{aligned} Z(s;\omega_J,R) &= \sum_{n=0}^\infty e^{-ns} P(n;\omega_J,R)\,, \ \ P(n) &= \int_{s_0-i\pi}^{s_0+i\pi} Z(s) e^{ns} rac{ds}{2\pi i}\,, \ P_a(n) &= \sum_{m=0}^n P_b(m) P_c(n-m) \Longleftrightarrow Z_a(s) = Z_b(s) Z_c(s)\,. \end{aligned}$$

- Jets with extreme multiplicities ($N_{\rm ch} > 100$) have been measured and display non-trivial particle correlations [1]. A new system to study QCD in the "many" limit and attracts theoretical interest [2].
- However, Pythia8 (MPI + color reconnection) underestimates $N_{\rm ch}$ distribution in **the interested region** by order of magnitude! Also, it is hard to trigger on jets with $N_{\rm ch} > 100$ with event generator.
- This poster: looking for semi-analytic understanding of such extreme $N_{\rm ch}$ fluctuations using a simplified system of pure gluons.

3. Non-perturbative modelling

Consider a parton with invariant mass (virtuality) Q_0 and energy ω .

- In the rest frame where $\omega=Q_0$, it will isotropically fragment into hadrons that carry energies $\Lambda_{
 m QCD}\lesssim E< Q_0.$
- If the parton is boosted with energy $\omega \gg Q_0$, then almost all the produced hadrons will be squeezed into a cone of size Q_0/ω .

Generating function is useful in convolving the multiplicity distributions of two partons in a jet. For example, for exclusive jet ∇

4. Perturbative correction to generating function

The LO+NLO contribution to the multiplicity generating function of an exclusive jet (LO expression is given by the non-perturbative model):

$$Z^{(0)}(s;\omega_J) + Z^{(1)}(s;\omega_J)$$
 (dimension regularization (DR) in $d = 4 - 2\epsilon$

$$= Z^{(0)}(s;\omega_J) \left[1 + \frac{\alpha_s(\mu)C_A}{2\pi} g(1) Z^{(0)}(s;0) \frac{1}{2} \left(\frac{1}{\epsilon^2} + \frac{1}{\epsilon} \mathcal{L} + \frac{1}{2} \mathcal{L}^2 \right) \right] \\ - \left(\frac{1}{\epsilon} + \mathcal{L} \right) \frac{\alpha_s(\mu)C_A}{2\pi} \int_0^1 dx \frac{g(x)Z^{(0)}(s;x\omega_J)Z^{(0)}(s;(1-x)\omega_J)}{(1-x)_+} \\ + \frac{\alpha_s(\mu)C_A}{2\pi} \int_0^1 dx g(x) Z^{(0)}(s;x\omega_J) Z^{(0)}(s;(1-x)\omega_J) \\ \times 2 \left(\frac{\ln(x)}{1-x} + \left[\frac{\ln(1-x)}{1-x} \right]_+ \right)$$

• From the considerations above, an ansatz for the average number of particles found in a cone of size ${m R}$ is

$$\langle n
angle_{\omega,Q_0} = n_0(Q_0) \left(1 + rac{cQ_0^2}{\omega^2 R^2}
ight)^{-1} .$$

- At $Q_0 = 4$ GeV, with $n_0(Q_0) = 7.7$ and c = 0.6, it gives a reasonable description of the Pythia8 simulations ($gg \rightarrow$ hadrons).
- If number of particles in the cone follows a Poisson distribution, then a simple model for P(n) and Z(n) at scale Q_0 could be

$$egin{aligned} P^{(0)}(n;\omega,R) &= rac{1}{n!} \left(\langle n
angle_{\omega,Q_0}
ight)^n e^{-\langle n
angle_{\omega,Q_0}} \,, \ Z^{(0)}(s;\omega,R) &= \exp\{ \langle n
angle_{\omega,Q_0} \left(e^{-s} - 1
ight) \} \,. \end{aligned}$$

5. Preliminary results

If only interested in P(n) (shape), evolve Z from $\mu = Q_0$ to $\omega_J R$ using

$$\frac{\partial Z(s,\omega_J;\mu)}{\partial \ln \mu^2} = \frac{\alpha_s(\mu)C_A}{2\pi} \int_0^1 dx \frac{g(x)Z(s,x\omega_J;\mu)Z(s,(1-x)\omega_J;\mu)}{(1-x)_\perp}$$

 $\mathcal{L} = \ln \left[\mu^2 e^{\gamma_E} / (\omega_J^2 R^2) \right]$ with μ the renormalization scale

- The red block contains the first two terms of the expanded Sudakov factor, i.e., the probability of no radiation outside the cone.
- The blue block contains a non-linear convolution of $Z^{(0)}$ with a collinear logarithmic enhancement \mathcal{L} . It can modify the s dependence of Z(s), thus changing the shape of P(n).
- The orange block is finite correction. Natural scale $\mu_J \sim \omega_J R$.

6. Discussion and Prospects

• We consider high multiplicities are generated by many perturbative $1 \rightarrow 2$ parton splittings in the cone and fragment independently \Longrightarrow a baseline for more interesting effects.

- The collinear evolution describes a rapid increase of multiplicity in jet towards large scale $\mu_J = \omega_J R$. Qualitatively reasonable.
- Will include quarks and consider inclusive jet in the future. Need deeper investigation of the equation (e.g. $n \gg \langle n \rangle$ asymptotics). Are higher-order nonlinear effects important (e.g. $P_{g \rightarrow ggg}$), etc?
- It could be an alternative tool to study high-multiplicity jets and be complementary to Monte Carlo event generator studies.

References

[1] CMS Collaboration, 2312.17103.[2] Wenbin Zhao, Zi-Wei Lin, Xin-Nian Wang, 2401.13137.