Perturbative & non-perturbative aspects of the multiplicity distribution in a jet Weiyao Ke, Pi Duan, Guang-you Qin, Central China Normal University

1. To understand jets with very high multiplicities

Generating function is useful in convolving the multiplicity distributions of two partons in a jet. For example, for exclusive jet ∇

2. Multiplicity distribution and generating function

Let $P(n;\omega_J,R)$ be the probability that a parton with energy ω_J produces an exclusive jet of radius R and contain n particles in the cone. We define the multiplicity generating function $Z(s)$ of exclusive jet as

- The red block contains the first two terms of the expanded Sudakov factor, i.e., the probability of no radiation outside the cone.
- The blue block contains a non-linear convolution of $Z^{(0)}$ with a collinear logarithmic enhancement \mathcal{L} . It can modify the s dependence of $Z(s)$, thus changing the shape of $P(n)$.
- The orange block is finite correction. Natural scale $\mu_J \sim \omega_J R.$

$$
Z(s;\omega_J, R) = \sum_{n=0}^{\infty} e^{-ns} P(n;\omega_J, R) \, , \, \ P(n) = \int_{s_0 - i\pi}^{s_0 + i\pi} Z(s) e^{ns} \frac{ds}{2\pi i} \, ,
$$

$$
P_a(n) = \sum_{m=0}^n P_b(m) P_c(n-m) \Longleftrightarrow Z_a(s) = Z_b(s) Z_c(s) \, .
$$

- Jets with extreme multiplicities ($N_{ch} > 100$) have been measured and display non-trivial particle correlations [1]. **A new system to study QCD in the "many" limit and attracts theoretical interest [2].**
- However, Pythia8 (MPI + color reconnection) underestimates N_{ch} distribution in **the interested region** by order of magnitude! Also, it is hard to trigger on jets with $N_{ch} > 100$ with event generator.
- **This poster**: looking for semi-analytic understanding of such extreme N_{ch} fluctuations using a simplified system of pure gluons.

• From the considerations above, an ansatz for the average number of particles found in a cone of size R is

4. Perturbative correction to generating function

The LO+NLO contribution to the multiplicity generating function of an exclusive jet (LO expression is given by the non-perturbative model):

$$
Z^{(0)}(s; \omega_J) + Z^{(1)}(s; \omega_J) \text{ (dimension regularization (DR) in } d = 4 - 2\epsilon)
$$

• We consider high multiplicities are generated by many perturbative $1 \rightarrow 2$ parton splittings in the cone and fragment independently \Longrightarrow a baseline for more interesting effects.

$$
= Z^{(0)}(s;\omega_J)\left[1+\frac{\alpha_s(\mu)C_A}{2\pi}g(1)Z^{(0)}(s;0)\frac{1}{2}\left(\frac{1}{\epsilon^2}+\frac{1}{\epsilon}\mathcal{L}+\frac{1}{2}\mathcal{L}^2\right)\right]\\-\left(\frac{1}{\epsilon}+\mathcal{L}\right)\frac{\alpha_s(\mu)C_A}{2\pi}\int_0^1dx\frac{g(x)Z^{(0)}(s;x\omega_J)Z^{(0)}(s;(1-x)\omega_J)}{(1-x)_+} \\+\frac{\alpha_s(\mu)C_A}{2\pi}\int_0^1dxg(x)Z^{(0)}(s;x\omega_J)Z^{(0)}(s;(1-x)\omega_J)\\ \times2\left(\frac{\ln(x)}{1-x}+\left[\frac{\ln(1-x)}{1-x}\right]_+\right)
$$

3. Non-perturbative modelling

Consider a parton with invariant mass (virtuality) Q_0 and energy $\omega.$

- In the rest frame where $\omega = Q_0$, it will isotropically fragment into hadrons that carry energies $\Lambda_{\rm QCD} \lesssim E < Q_0$.
- If the parton is boosted with energy $\omega \gg Q_0$, then almost all the produced hadrons will be squeezed into a cone of size $Q_0/\omega.$

$$
\langle n\rangle_{\omega,Q_0}=n_0(Q_0)\left(1+\frac{cQ_0^2}{\omega^2R^2}\right)^{-1}.
$$

- At $Q_0\,=\,4$ GeV, with $n_0(Q_0)\,=\,7.7$ and $c\,=\,0.6$, it gives a reasonable description of the Pythia8 simulations $(gg \rightarrow)$ hadrons).
- If number of particles in the cone follows a Poisson distribution, then a simple model for $\bm{P}(\bm{n})$ and $\bm{Z}(\bm{n})$ at scale $\bm{Q_0}$ could be

$$
\begin{aligned} P^{(0)}(n;\omega,R) &= \frac{1}{n!} \left(\langle n \rangle_{\omega,Q_0} \right)^n e^{-\langle n \rangle_{\omega,Q_0}}, \\ Z^{(0)}(s;\omega,R) &= \exp\{ \langle n \rangle_{\omega,Q_0} \left(e^{-s}-1 \right) \} \, . \end{aligned}
$$

5. Preliminary results

If only interested in $P(n)$ (shape), evolve Z from $\mu=Q_0$ to $\omega_J R$ using

$$
\frac{\partial Z(s,\omega_J;\mu)}{\partial \ln\mu^2}=\frac{\alpha_s(\mu)C_A}{2\pi}\int_0^1dx\frac{g(x)Z(s,x\omega_J;\mu)Z(s,(1-x)\omega_J;\mu)}{(1-x)_+}
$$

 $\mathcal{L} = \ln\big[\mu^2 e^{\gamma_E}/(\omega_J^2)\big]$ J \mathbb{R}^2) with μ the renormalization scale

.

6. Discussion and Prospects

- The collinear evolution describes a rapid increase of multiplicity in jet towards large scale $\mu_J=\omega_J R$. Qualitatively reasonable.
- Will include quarks and consider inclusive jet in the future. Need deeper investigation of the equation (e.g. $n \gg \langle n \rangle$ asymptotics). Are higher-order nonlinear effects important (e.g. $P_{g\rightarrow ggg}$), etc?
- It could be an alternative tool to study high-multiplicity jets and be complementary to Monte Carlo event generator studies.

References

[1] CMS Collaboration, 2312.17103. [2] Wenbin Zhao, Zi-Wei Lin, Xin-Nian Wang, 2401.13137.