

Probing hadronization with the charge correlator ratio in p+p and Ru+Ru/Zr+Zr collisions at STAR

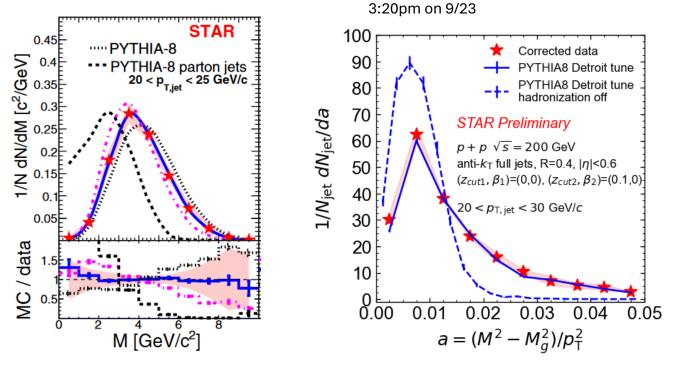
Youqi Song, Yale University (youqi.song@yale.edu)

12th international conference on hard and electromagnetic probes of high-energy nuclear collisions

Nagasaki, Japan

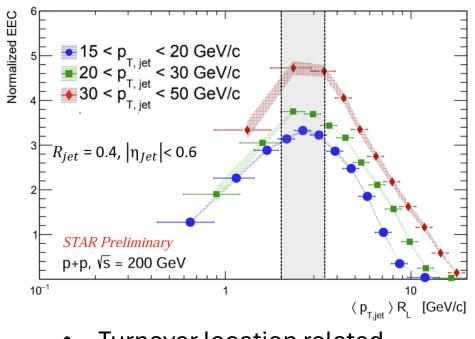
9/25/2024

Motivation: Understand jet substructures


Hadronization is important for many jet substructure measurements

CollinearDrop jet mass:

See theory talk by Yang-Ting Chien @


STAR. arXiv:2307.07718

Jet mass: STAR. PRD 104, 052007(2021)

• Distributions shifted due to hadronization

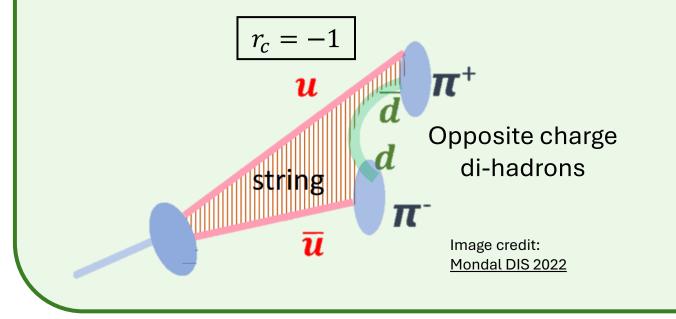
Energy correlators: See STAR <u>talk</u> by Andrew Tamis @ 10:50am on 9/24

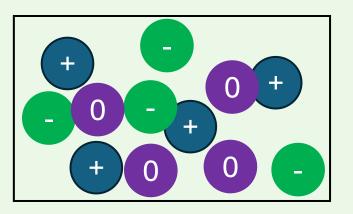
• Turnover location related to confinement scale

Hard Probes, 9/25/24

ST AR

Motivation: Study hadronization


$$r_c = \frac{\text{same} - \text{opposite}}{\text{same} + \text{opposite}}$$

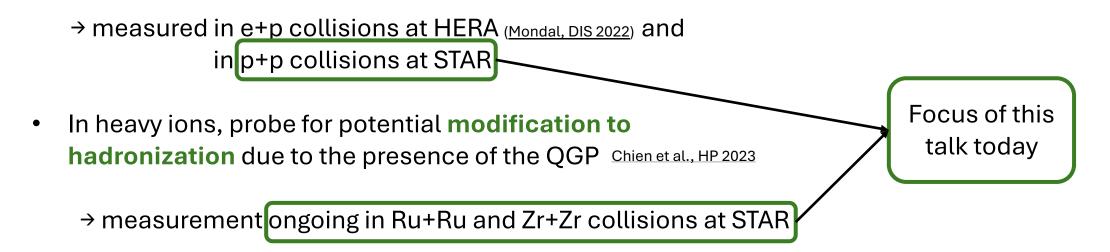

• Definition of the charge correlator ratio r_c : <u>Chien et al. PRD 105 051502 (2022)</u>

$$r_c(X) = rac{\mathrm{d}\sigma_{h_1h_2}/\mathrm{d}X - \mathrm{d}\sigma_{h_1\overline{h}_2}/\mathrm{d}X}{\mathrm{d}\sigma_{h_1h_2}/\mathrm{d}X + \mathrm{d}\sigma_{h_1\overline{h}_2}/\mathrm{d}X}$$
 h_1h_2 : same charge leading di-hadrons, $h_1\overline{h}_2$: opposite charge leading di-hadrons

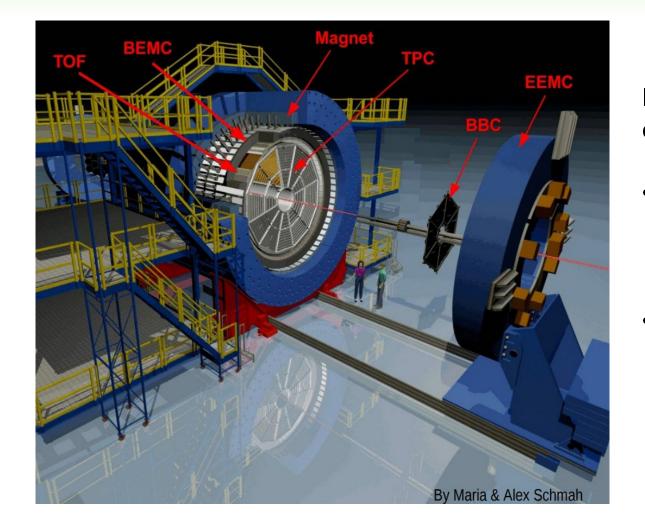
- Lund **string fragmentation**: expect charge correlation between leading di-hadrons in jets
- **Infinite bath** with no net charge: expect no charge correlation among pairs

 $r_c = 0$

Motivation: Study hadronization


$$r_c = \frac{\text{same} - \text{opposite}}{\text{same} + \text{opposite}}$$

• Definition of the charge correlator ratio r_c : Chien et al. PRD 105 051502 (2022)


 $r_c(X) = \frac{\mathrm{d}\sigma_{h_1h_2}/\mathrm{d}X - \mathrm{d}\sigma_{h_1\overline{h}_2}/\mathrm{d}X}{\mathrm{d}\sigma_{h_1h_2}/\mathrm{d}X + \mathrm{d}\sigma_{h_1\overline{h}_2}/\mathrm{d}X} \quad \begin{array}{l}h_1h_2 \text{: same charge leading di-hadrons,}\\h_1\overline{h}_2 \text{: opposite charge leading di-hadrons}\end{array}$

• In vacuum, probe for contribution of string-like fragmentation

The STAR detector

Important subdetectors for **200 GeV p+p** collisions data-taking during 2012 RHIC run

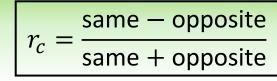
- **TPC** (Time Projection Chamber)
 - For charged particle track reconstruction
 - $|\eta| < 1$, full azimuthal coverage
- **BEMC** (Barrel ElectroMagnetic Calorimeter)
 - For **neutral** energy measurement and triggering
 - $|\eta| < 1$, full azimuthal coverage

How to measure r_c

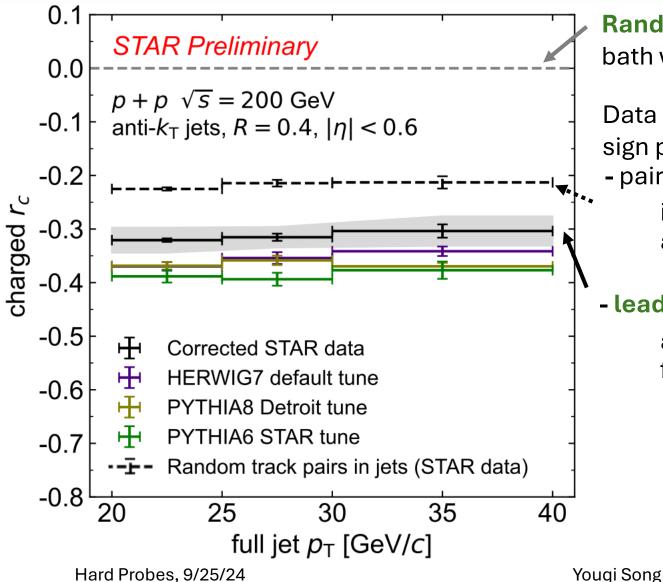
• Find jets

- Count the number of leading and subleading hadron track pairs that have the same (opposite) electric charge (see backup for details)
- Correct for detector effects (see backup for details)

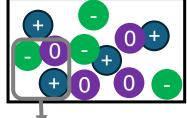
anti- k_T full jets with R = 0.4 from 200 GeV p+p


Slightly modified definition from <u>Chien et al.</u> but comparison with MC models is still meaningful!

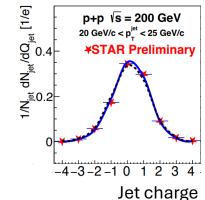
$$r_c(X) = \frac{\mathrm{d}\sigma_{h_1h_2}/\mathrm{d}X - \mathrm{d}\sigma_{h_1\overline{h}_2}/\mathrm{d}X}{\mathrm{d}\sigma_{h_1h_2}/\mathrm{d}X + \mathrm{d}\sigma_{h_1\overline{h}_2}/\mathrm{d}X}$$


 h_1h_2 : same charge leading **track** pairs, $h_1\overline{h_2}$: opposite charge leading **track** pairs X: any jet observable, e.g., jet p_T

Result in p+p

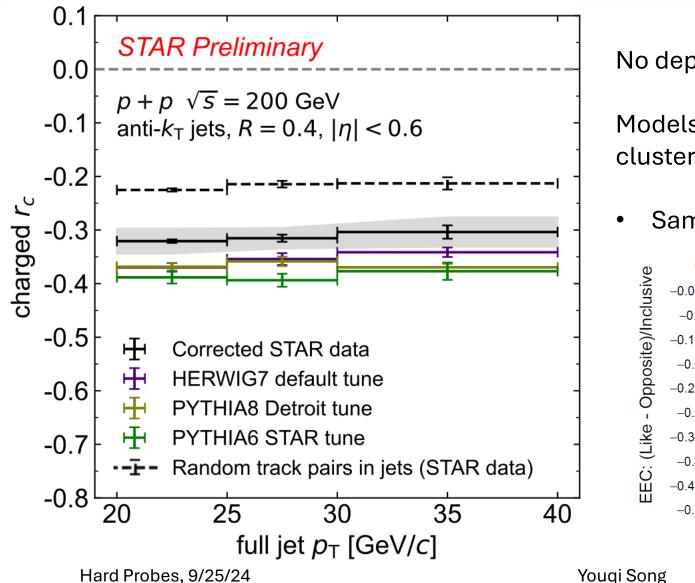

Random pairs in an uncorrelated (infinite) bath with no net charge: $r_c = 0$

Data show a preference of opposite sign pairs over same sign pairs, in: - pair of **random track pairs in jet**;


influenced by jet charge ~ 0 on average: $r_c \, pprox - 0.2$

- leading track pairs in jet.

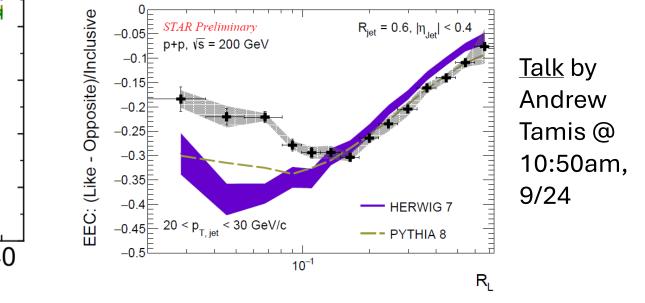
additional correlation from fragmentation: $r_c \approx -0.3$



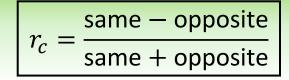
clustered into jet

PYTHIA6 Perugia + STAR tune: <u>Skands. PRD 82, 074018 (2010)</u> J. K. Adkins, PhD thesis (Kentucky U., 2015) PYTHIA8 Detroit tune: <u>Aguilar et al. PRD 105, 016011(2022)</u> HERWIG7: <u>Bellm, et al. EPJC 76, 196 (2016)</u>

Result in p+p


same – opposite $r_c =$ same + opposite

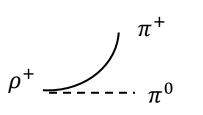
No dependence on jet $p_{
m T}$ in 20-40 GeV/c

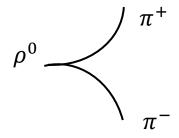

Models based on Lund string fragmentation and cluster hadronization both **underpredict** r_c in data.

• Same trend observed in charged EEC

8

What else affects r_c ?





• Where does a π^+ leading track in jet come from?

	PYTHIA8	HERWIG7
fragmentation	(Di)quarks: 47%	Cluster: 29%
$ ho(770)^{+}$	21%	23%
$ ho(770)^{0}$	16%	17%

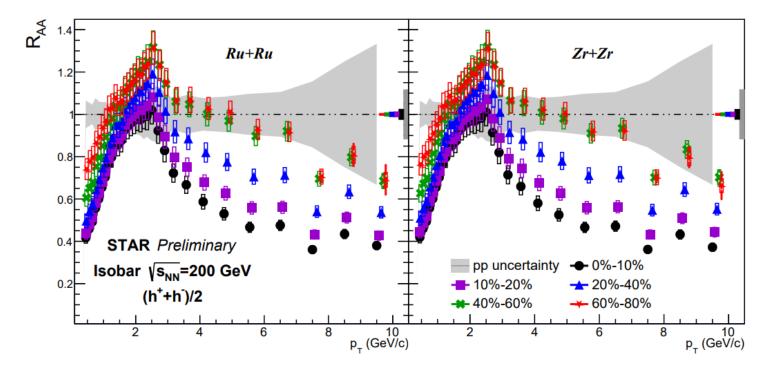
• How do resonances affect r_c ?

Sign-preserving decays maintain r_c from fragmentation

Neutral resonance decays can bring r_c down

- PYTHIA vs HERWIG
 - Similar r_c predictions
 - Different contributions from fragmentation vs decays. **Effect of different** hadronization mechanism?

Moving to heavy ions

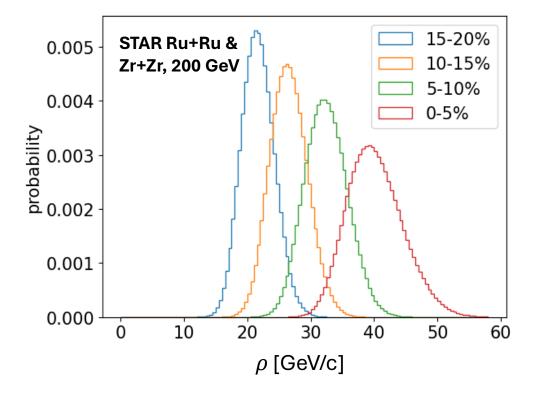


Isobar collisions: Ru+Ru and Zr+Zr, A = 96, $\sqrt{s_{NN}} = 200 \text{ GeV}$

In central events, observed jet quenching

→ next step: study modification to jet substructure

→ **medium-sized** collision systems → background easier to control than in Au+Au


Moving to heavy ions

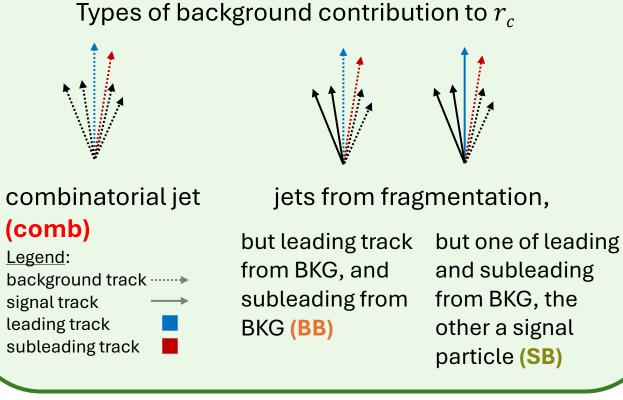
To remove combinatorial jets, could do leading track p_T selection, but that introduces a **fragmentation bias**

Instead **impose a strict cut** of $p_T - \rho A > 20$ GeV/c

- Background subtracted p_T over 10σ more than fluctuations → significantly reduce combinatorial background
 - Width $\sigma(\rho) \sim 4.4$ GeV/c in 0-5% $\Rightarrow \sigma(\rho A) \lesssim 2$ GeV/c

How to measure r_c in heavy ions:

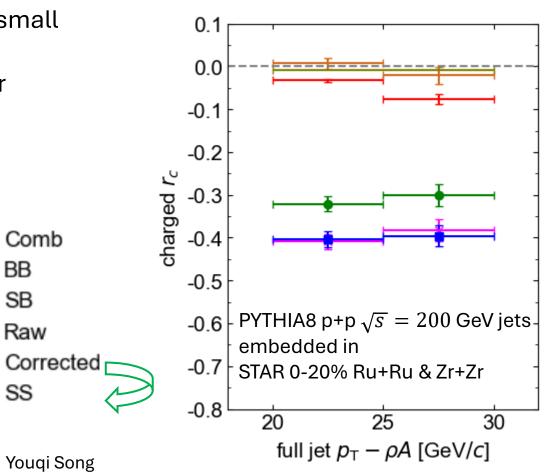
background subtraction



Embed PYTHIA jets into isobar events. There are caveats to this study!

- enhanced S/B
- no effect from jet quenching
- no background-jet correlation from flow

→ proof of principle where **Prob** factors are known and r_c for each term can be easily modeled



How to measure r_c in heavy ions:

background subtraction experiment

- PYTHIA jets + 0-20% isobar event → embedded jets
- Background subtraction: $p_T \rho A > 20$ GeV/c •
- Roughly, $r_c(\text{comb}) = r_c(\text{BB}) = r_c(\text{SB}) \sim 0$, with small deviations from:
 - **comb** = combinatorial + real jets in isobar events
 - **BB** = 2 background particles + isobar jets overlapping with PYTHIA jets
- Remove all background contributions to r_c and compare result
 - Good agreement between corrected and embedded matched (SS)

r_c(raw) = Prob(comb) $\times r_c$ (comb) + Prob(BB) $\times r_c$ (BB) + Prob(SB) $\times r_c$ (SB) + Prob(SS) $\times r_c$ (SS)

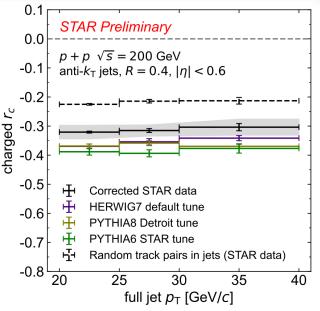
Comb

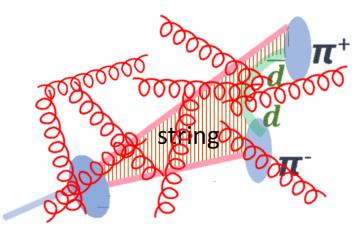
BB

SB

SS

Raw


÷


Ŧ

Conclusions & outlook

- First measurement of r_c in hadron collisions, looking for evidence of string-like fragmentation
 - In p+p 200 GeV at STAR, data show a weaker correlation between leading and subleading particles in jet than models
- How to better **disentangle models**?
 - r_c as a function of $(k_T, t_f, z...)$, for identified particles? \rightarrow ongoing effort at STAR
 - *r_c* at the future EIC! <u>Chien et al. PRD 105 051502 (2022)</u>
- Ongoing measurement in heavy ion collisions, probing for potential modification of hadronization due to QGP
 - Background subtraction experimented with isobar embedding at STAR, good closure shown
 - Stay tuned for results!

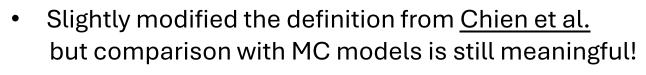
Backup

How to measure r_c : Revisiting the definition

- Find jets
 - For each jet, examine the **leading** and **subleading** constituent pairs
- Count the number of constituent pairs that have the same (opposite) electric charge
 - What if the leading constituent is neutral?
 - Definition by <u>Chien et al. PRD 105 051502 (2022)</u> :
 - Don't consider these jets
 - But we may not easily identify them experimentally

$$r_c(X) = \frac{\mathrm{d}\sigma_{h_1h_2}/\mathrm{d}X - \mathrm{d}\sigma_{h_1\overline{h}_2}/\mathrm{d}X}{\mathrm{d}\sigma_{h_1h_2}/\mathrm{d}X + \mathrm{d}\sigma_{h_1\overline{h}_2}/\mathrm{d}X}$$

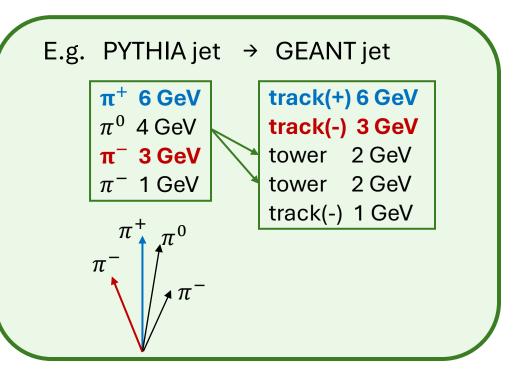
anti- k_T full jets with R = 0.4 from 200 GeV pp collisions



where

 h_1h_2 : same charge leading di-hadrons, $h_1\overline{h_2}$: opposite charge leading di-hadrons X: any jet observable, e.g., jet p_T

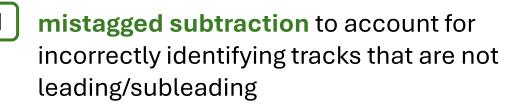
How to measure r_c : Revisiting the definition

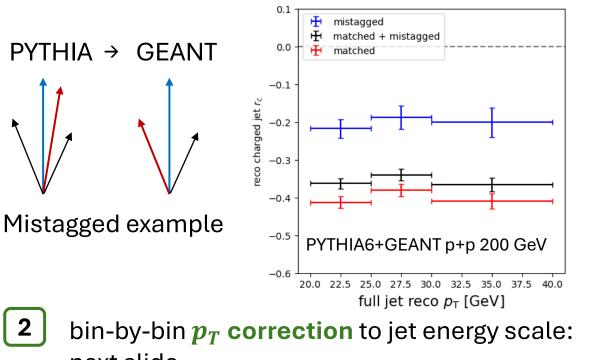

- Find jets
- For each jet, examine the leading and subleading track pairs
- Count the number of **track** pairs that have the same (opposite) electric charge
- Correct for detector effects

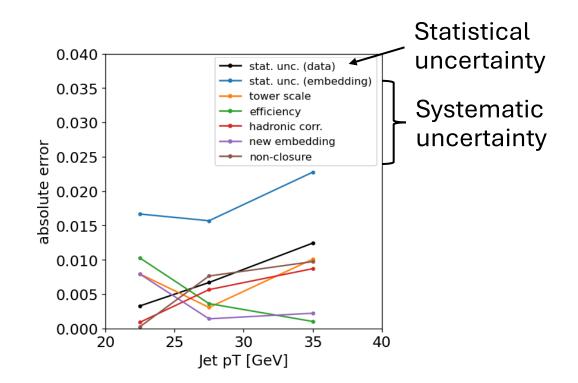
$$r_c(X) = \frac{\mathrm{d}\sigma_{h_1h_2}/\mathrm{d}X - \mathrm{d}\sigma_{h_1\overline{h}_2}/\mathrm{d}X}{\mathrm{d}\sigma_{h_1h_2}/\mathrm{d}X + \mathrm{d}\sigma_{h_1\overline{h}_2}/\mathrm{d}X}$$

where

 h_1h_2 : same charge leading di-**tracks**, $h_1\overline{h_2}$: opposite charge leading di-**tracks** X: any jet observable, e.g., jet p_T



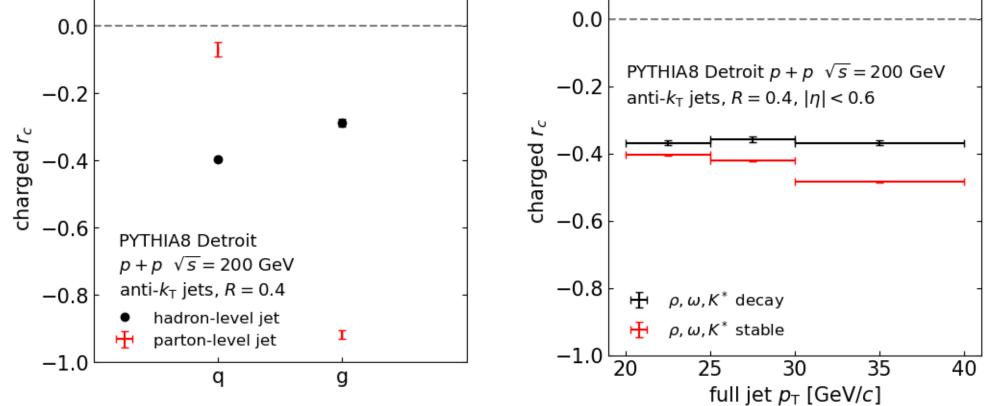

-0.5 PYTHIA6+GEANT p+p 200 GeV -0.6full jet reco p_{T} [GeV] next slide Hard Probes, 9/25/24


18

How to measure r_c : Correcting for detector effects

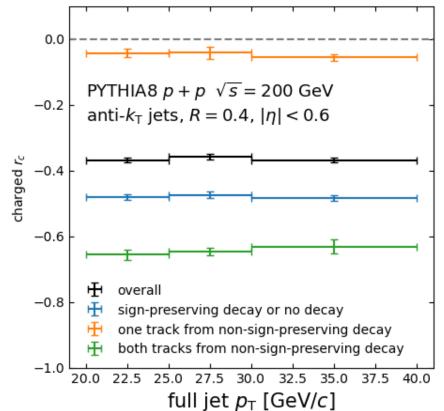
Tracking inefficiency \rightarrow mistagged correlation

How to measure r_c : Correcting for detector effects


- **2** Bin-by-bin p_T correction to jet energy scale
- For each detector-level pT bin, reweight the charge sign distribution in embedding, to match data after mistagged correction.

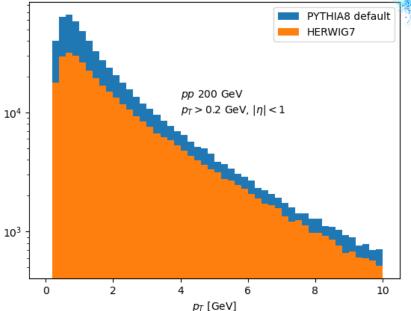
- This means, if we weight the opposite pair jets down (0.94) and the same sign jets up (1.13) in PYTHIA+GEANT, then we can get the PYTHIA+GEANT rc to match data (after mistagged subtraction).
- Since jets are matched between PYTHIA and PYTHIA+GEANT, the reweights automatically carry onto the PYTHIA jets too. This matching essentially serves the role of a response matrix, since it also contains the information such as the truth jet pT distribution given a reconstructed pT.

Decays



Decays

- In PYTHIA8, for leading tracks in jets, 47% of them come from resonance decays
 - Some of these decays preserve charge signs
 - $\bullet\,\rho^+(770)\to\pi^+\pi^0$
 - $\bullet \, K^*(892)^+ \to K^+ \pi^0$
 - $\bullet\,\Delta^+ \to p\pi^0$
 - 26% of them come from non-sign-preserving decays


Resonances

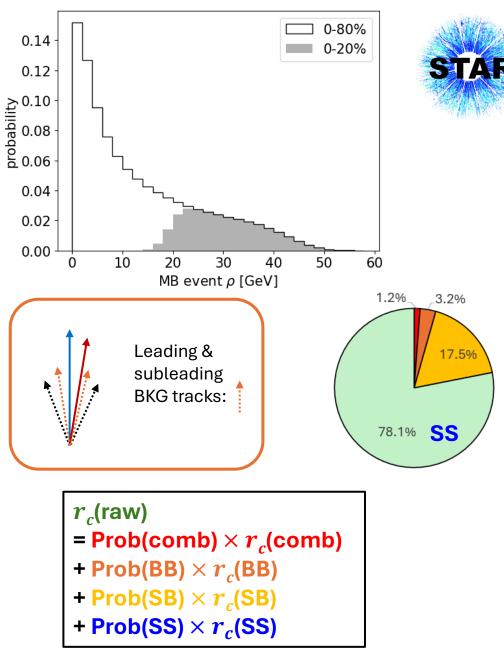
• Where does a π^+ leading track in jet come from?

		ΡΥΤΗΙΑ8	HERWIG7	Decays	
		(Di)quarks: 47%	Cluster: 29%	-	r unit
213	$\rho(770)^{+}$	21%	23%	$\pi^+\pi^0$, ~100%	arb
113	$ ho(770)^{0}$	16%	17%	$\pi^+\pi^-$, ~100%	
223	ω(782)	9%	3%	$\pi^+\pi^-\pi^0$, 89%	1

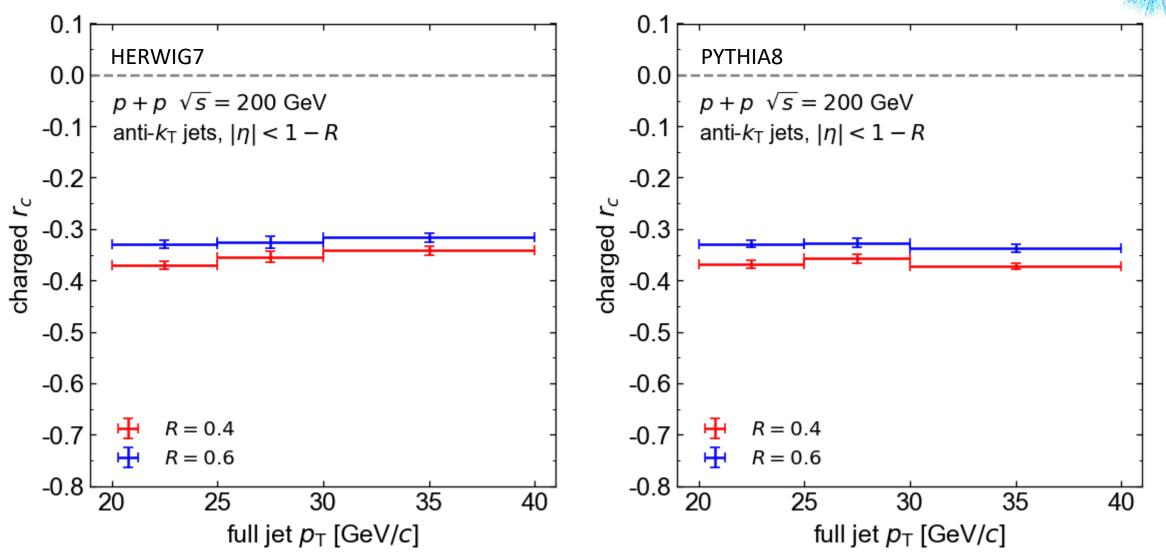
• Where does a π^+ subleading track in jet come from?

	ΡΥΤΗΙΑ8	HERWIG7	•
	(Di)quarks: 40%	Cluster: 22%	
$\rho(770)^{+}$	19%	22%	
$ ho(770)^{0}$	18%	18%	
ω(782)	13%	4%	
<i>K</i> [*] (892) ⁺	3%	4%	
$K^{*}(892)^{0}$	2%	2%	

 $\omega(782)$ spectrum

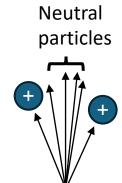

- Probability < 1e-7 in PYTHIA8 but > 1% in HERWIG: 3% $f_2(1270)$, 2% $a_2^+(1320)$, 1% $a_0^+(980)$
- Not "seen" by PYTHIA8 (off by default) but > 1% in HERWIG: 2% $b_1^+(1235)$, 1% $a_2^0(1320)$, 1% $\rho^+(1700)$
 - a pseudovector multiplet with L=1, S=0, J=1;
 - a scalar multiplet with L=1, S=1, J=0;
 - a pseudovector multiplet with L=1, S=1, J=1;
 - a tensor multiplet with L=1, S=1, J=2.

How to measure r_c in heavy ions:

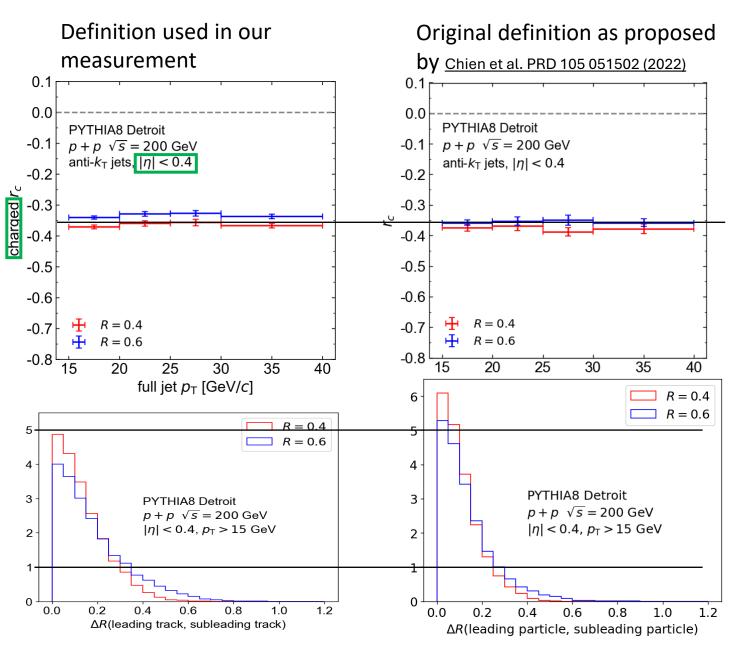

background subtraction experiment

Embedded jets breakdown:

- **comb**: jets not matched to PYTHIA jets within $\Delta R = 0.4$
 - may contain real jets in isobar events. To take care of them more carefully, need to do event mixing
 - for this study, obtain r_c(comb) from MB events without embedding
- BB: matched jets whose leading and subleading tracks both unmatched to PYTHIA leading and subleading
 - with embedding jets, obtain $r_c(BB)$ between the leading and subleading **background tracks**, even if there are PYTHIA jet tracks that have higher p_T
- SB : should have no correlation in this study. For this study, r_c(SB) can be obtained by finding jets in MB events and excluding the leading dijets



Jet radius dependence



Jet radius dependence

- r_c is less negative with larger jet $R \rightarrow$ likely that "background" track pairs are included with larger R
- Potentially introduce a jet neutral energy fraction requirement to reduce this effect
 - Fragmentation bias? Or does this bring us closer to the "original definition"?

Example of a jet with a large R and large neutral core

Hard Probes, 9/25/24