Measurement of the Drell-Söding process in UPC Au+Au 200 GeV collisions

Xinbai Li, for the STAR Collaboration

University of Science and Technology of China

Introduction:

- Clouds of quasi-real photons with relativistic heavy ions (EPA) [1-2]
- Vector mesons and dihadron continuum produced by photon-nuclear interaction
- $\pi^+\pi^-$ production with arbitrary single virtual pion scattering with nucleus Drell-Söding process

Data, detector and trigger:

Run10, 11, 14 three years upc-main trigger data with around 134 million events and over 1 million ρ^0

Physics opportunities:

- Interference enabled between different amplitudes (virtual π^+/π^-A collisions)?
- How does decay influence observable interference patterns?
- Scattering effect for the entanglement of the initial dipion
- Nuclear dissociation difference for $\pi^+\pi^- A$ and $\rho^0 A$ scattering [4]

The fitting algorithm for Drell-Söding process:

Fit $\pi^+\pi^-$ mass spectra with the fitting function:

 $\frac{d\sigma}{dM_{\pi^{+}\pi^{-}}} = \left| A_{\rho} BW_{\rho}(M_{\pi\pi}) f_{fluxcorr}(M_{\pi\pi}) + Bf_{S\"oding}(M_{\pi\pi}) + C_{\omega} e^{i\phi_{\omega}} BW_{\omega}(M_{\pi\pi}) \right|^{2}$ $+f_{dimuon} + f_{background}$ STAR Preliminary o/Ge — Full fit 50 — ρ Breit-Wigner Au+Au √s_{NN}=200 GeV — ω Breit-Wigner р_{тπ⁺π} <0.1 GeV/c, | y |<0.9 Drell-Söding *BW*: relativistic Breit-Wigner function. — ρ interference Söding ω interference Söding A_{ρ} and C_{ω} : amplitudes for ρ^0 and ω d²ơ/dM, $-\omega$ - ρ interference 30 ____γγ→μ⁺μ⁻ ϕ_{ω} : the mixing phase angle.

Event selection: $\succ |V_z| < 100 \text{ cm}$ > Only 2 primary tracks ➢ Both match TOF

0.25

Trigger detail:

> ZDC coincidence

Activity in bTOF

 \succ BBC veto

STAR: Solenodial Tracker At RHIC:

- **TPC:** Particle identification using dE/dx **TOF:** Reduce pile-up effect
- **D** ZDC: luminosity and neutron detection

Diffractive p_T and t spectra

- \square The p_T of produced pair is the convolution of photon and nuclear gluon p_T distributions. [9]
- \Box The suppressed production at very low p_T ($p_T < 0.01$ GeV/c) is

due to the interference. [9]

, 		<u> </u>
//c	-	STAR Preliminary
e	-	Au+Au √s=200 GeV

 $f_{fluxcorr}$: the mass correction due to the photon flux

- $f_{S\"oding}$: normalized spectra from model calculation [5-6] with scale *B*; $f_{dimuon}: \gamma \gamma \rightarrow \mu^+ \mu^- \text{ from QED}$ calculation [7]; *f*background: a linear polynomial that
- accounts for the remaining background

0.6 0.7 0.8 1.2 1.3 0.5 $M_{\pi\pi}$ (GeV/c²)

 \square Reduce the parameters by fixing ω parameters from fit to mass spectra for $p_T < 0.1 \text{ GeV/c}$ \square Fit mass distributions per p_T or $\Delta \phi$ interval ($\Delta \phi = \phi_{(\pi_1 - \pi_2)} - \phi_{\pi\pi}$)

ρ⁰

Drell-Söding

24/9/2024 HP 2024

Interference measurement

$$A_{2\Delta\phi} = \int d\Delta\phi f(\Delta\phi) \cos 2\Delta\phi / \int d\Delta\phi f(\Delta\phi)$$

Interference intensity represented by $A_{2\Delta\phi}$

Q1: Different amplitudes of virtual $\pi^+ A$ and $\pi^- A$ might cause destructive interference

Q2: Scattering with nucleus might lead to decoherence of entangled dipion

$A_{2\Delta 0}$	0.6 STAR <i>Preliminary</i> Au+Au √s _{NN} =200 GeV 0.5 y < 0.9	• $\rho^0 A_{2\Delta\phi}$ • Drell-Söding A	Counts	0.2	STAR <i>Preliminary</i> Au+Au √s _{NN} =200 GeV p _{Tπ*π} < 30 MeV/c, y < 0.9
	-		- 0	,	Τπ*π

- The Söding diffractive pattern is like a shrunken mode for ρ^0
- —The diffractive dip moves forward due to smaller Söding pair mass
- The ratio is flat except at the diffractive dip and very low p_T

Summary

 \checkmark The first measurement of diffractive p_T and interference of the Drell-Söding process

 $\square A_{2\Delta\phi}$ for Söding and ρ^0 coherent production agree perfectly for first two bins. \square Need more studies at higher p_T ($p_T > 0.25 \text{GeV/c}$) and very low p_T ($p_T < 0.01$ GeV/c)

✓ Perfect platform to study interference of photoproduction Interference enabled between virtual π^+/π^-A scattering for the Drell-Söding process.

Reference

[1] C.F. von Weizsacker, Z. Phys. 88 (1934) 612. [2] E.J. Williams, Phys. Rev. 45 (1934) 729. [3] J. Pumplin, *Phys. Rev. D.*2 (1970) 1859. [4] ZEUS Collaboration, Eur. Phys. J. C 2, 247 (1998) [5] S.R. Klein et al., Comp. Phys. Comm. 212 (2017) 258 [6] A. Bolz et al., *JHEP* 01 (2015) 151 [7] W. Zha et al., *Phys. Lett. B* 800 (2020) 135089 [8] W. Zha et al., *Phys. Rev. D* 103 (2021) 033007 [9] S. R. Klein and J. Nystrand, Phys. Rev. Lett. 84 (2000) 2330

> The STAR Collaboration drupal.star.bnl.gov/STAR/presentations

Supported in part by

