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Introduction
We apply the BDMPS-Z formalism, to derive medium-
induced parton splitting rates within a Bjorken expanding
QCD plasma. We investigate the impact of the medium
expansion on the splitting rates and compare them with
those in a static medium. Additionally, we examine the
leading order in the opacity expansion and the harmonic
oscillator solution, valid in the limits of small and large
formation times, respectively.

Splitting Rates in Expanding
Medium

Following [3], the splitting rate for a → bc (P → zP, (1−
z)P ) can be written as
dΓabc
dz

(P, z, t) =
g2T0P

a
bc(z)

4πP 2z2(1− z)2
Re

∫ t

0

d∆t

∫
p

e−i
∫ ∆t

0 du δE(u,p)ψI(p,∆t; t) ,

Momentum broadening described using Hard Thermal
Loop potential

C(t,p) =
CRg

2T (t)m2
D(t)

q2(q2 +m2
D(t))

.

We consider a Bjorken expanding [2, 1] thermal medium with
temperature T (t) = T0

(
t0
t+t0

)α/3
, where t0 is the time the

parton enters the medium and α the expansion
exponent.
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Figure 1: Rate of P = 16 GeV gluon splitting to a gluon (zP ) with z = 0.01 (left) and z = 0.5 (right). Static medium in
black lines, Bjorken expanding medium with t0 = 0.1 fm/c or 0.3 fm/c using red circles or crosses respectively.

We compute the splitting of a P = 16 GeV gluon to a gluon
with z = 0.01 and z = 0.5 in a static and Bjorken expanding
medium with T0 = 0.2 GeV.

·Soft splitting z � 0.5:
» Initial linear growth comparable between static and
Bjorken expansion for full and OE rates.

»Late time behavior suppressed in expanding medium.
»Small t0 leads to rapid temperature decrease, resulting
in lower medium scales q̂, increasing the formation time
(tf ∝ 1√

q̂
) ⇒ failure of the opacity expansion.

·Hard splitting z ' 0.5:
»More pronounced suppression of the splitting rate.
»Early-time behavior of the HO solution significantly
differs from the full rate.

» Increased scale separation between hard parton P and
medium T , resulting in deep LPM regime at late times.

Energy Cascade in
Static Medium
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Figure 2: Evolution of gluon energy distribution in a static medium. Initial P = 100 GeV gluon traveling in a static
medium T = 0.2 GeV, using systematic treatment of formation time (full lines), global formation time (dashedline-
crosses) or AMY infinite medium (squares) at the same remaining energy.

We investigate the impact of systematic treatment of
medium formation time of each splitting on the energy
cascade in a static medium.

·Global formation time:
∂tD(x) =

∫ 1

0

dz

[
dΓabc
dz

(x
z
, z, t

)
zD

(x
z

)
− dΓabc

dz
(x, z, t)zD(x)

]

·Systematic treatment of formation time:
∂tD(x) =

∫ t

0

ds

∫ 1

0

dz

[
dΓabc
dz

(x
z
, z, t− s

)
zD

(x
z

)
− dΓabc

dz
(x, z, t− s)zD(x)

]
In Fig. 2, we show the evolution of a gluon P = 100 GeV
energy distribution in a static medium with T0 = 0.2 GeV.
»Early times: global formation time is comparable to the
systematic treatment.

»The energy cascade is significantly delayed when using
the systematic treatment of formation time.

»Late times: Global formation time similar to AMY infinite
medium results.

»Hard splittings become more important when using the
systematic treatment.

Conclusions
The medium expansion suppresses the splitting rates
in a QCD medium. While the early-time behavior is well
described by the OE expansion, the late time temperature
decreases leads a large phase space for the deep LPM
region. These rates are essential for understanding the
in-medium QCD shower, where a systematic treatment of
the formation time leads to significant delay of the energy
cascade.
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