

- + Use the both results of the R_{AA}^{jet} and v_2^{jet} measured under the same conditions \rightarrow Quantify the parameters (\hat{e}_n , n) of the parton energy loss $\Delta E = \hat{e}_n L^n$
- No dependency on time evolution of the QGP medium
- No dependency on the parton's p_{T}

4. Jet's Yield p_{T} **Distributions (Step 5-7)**

Estimate energy loss $\Delta E (= \hat{e}_n L^n)$ distribution using the evaluated path length distribution and an arbitrary \hat{e}_n .

By dispersing each p_{T} bin value of the jet yield distribution according to the ΔE distribution, the suppressed jet yield distributions are obtained.

5. Results

The \hat{e}_n values determined by the Step6.

 $\hat{e}_1 = 1.9 [\text{GeV/fm}], \hat{e}_2 = 0.52 [\text{GeV/fm}^2], \hat{e}_3 = 0.14 [\text{GeV/fm}^3]$

Left Fig: R_{AA}^{jet} is obtaind by the Eq1 using jet yield distributions of the Step5. Right Fig: v_2^{jet} is obtained by the Eq2 using jet yield distributions of the Step7.

Comparison of p_{T} distributions V_2^{jet} and R_{AA}^{jet} between simulation and measurement

Determine the \hat{e}_n to match the suppressed distribution with the measured jet yield distribution in heavy-ion collisions.

Apply the determined \hat{e}_n to the L distributions in the in-/out-of-plane, and obtain p_{T} distributions for both regions.

 $\chi^2 = \sum_i \frac{(\text{Obs}_i - \text{Sim})^2}{(\sigma_{\text{data},i})^2} / \text{NDF}$ *n* = 3 n = 1 n = 2Obs_i : Observed value , Sim: Simulaiton value χ^2 (R_{AA}^{jet}) 0.29 0.52 0.31 $\sigma_{\text{data},i}$: Uncertainty of measurement χ^2 (V_2^{jet}) 31 72 2.9 NDF = (# of p_T bin) – (Free paraemter: \hat{e}_n) = 5 Significance level 0.05: $\chi^2(5) < 11$

- R_{AA}^{jet} : All simulations are consistent with the measurement. - v₂^{jet}: Only n = 1 model is consistent with the measurement.

6. Conclusion

Developed new parton energy loss simulation using both R_{AA}^{jet} and v_2^{jet} under the same conditions. **Only the** *n* **= 1 model** is consistent with the

measurements for both R_{AA}^{jet} and v_2^{jet} , and it determined the energy loss parameter $\hat{e}_1 = 1.9$ [GeV/fm].

7. Outlook

- Compare different centrality measurements
- Compare different experiments (ex. ATLAS, sPHENIX)
- Compare different simulation (ex. **JETSCAPE**)

Hard Probes 2024, 2024/09/06, DEJIMA MESSE NAGASAKI