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Abstract

We study jet production and modification in lead-lead collisions at the LHC energies within a recently introduced SUBA-Jet framework. The core of the framework is a time-like parton shower that starts with a seed parton with high Q2 as well as realistic fluid dynamic evolution
of the medium, simulated using the vHLLE code. The initial parton seeds are produced by PYTHIA, whereas the initial state for the medium is modeled with TRENTo model. At particlization, the medium decouples into hadrons, with final-state hadronic rescatterings simulated using
the SMASH hadronic transport. The jet partons lose energy in the medium and hadronize. The ingredients above allow to simulate a complete event containing both soft and hard hadrons. This complete framework is called J-PHASE-Generator.

We benchmark the jet energy loss in lead-lead collisions at 5.02 TeV LHC energy in this framework, and, in particular, we examine the influence of hadronic phase on the jet properties. Traditionally, jet modification is assumed to happen solely in the QGP phase, based on arguments
of formation time of jet hadrons and low jet transport coefficient in hadronic phase. We argue that the validity of those arguments depends on hadronpr, and as a result the complete jet object can have a visible modification in the hadronic phase, as quantified by different observables.
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di ::q(llzﬁ L 0.090 plasma (QGP) in heavy-ion collisions, with the inclusion of bulk and shear viscous effects.
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SMASH [arXiv:1606.06642]

» SMASH is a relativistic hadronic transport model designed to simulate non-equilibrium hadronic dynamics. All well-established hadrons with mass up to ~2 GeV are included as degrees of freedom.
» SMASH constitutes an effective solution of the relativistic Boltzmann transport equation, where the evolution of the phase-space distribution of particles is governed by the collision integral on the right-hand
side. Effective solution is obtained with the test particle method by increasing the number of particles and proportionally reducing the cross-sections, preserving the overall dynamics.
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» The collision integral accounts for 2 - 2 elastic and inelastic scatterings, 2 -» 1 processes, and 1 -» 2 decays. For high center-of-mass energies (above ~3 GeV), the Lund string fragmentation model is applied.

"Real" - Hadronised parton shower without background, followed by simple reconstruction. Simulated data of pp and PbPb (30-40%
Results ’ "Reco" - Jets and soft hadrons are combined (without interaction), followed by jet reconstruction with background subtraction centrality) collisions at a center-of-mass

"Tr = x" - Jet hadrons interact with soft hadrons after a formation proper time, followed by the same reconstruction as in "Reco" G L < (10 0/ 5 02U
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C I ] ' Jet shape (right)
OnC USIOﬂ » Both QGP and hadronic interactions suppress

the hard jet core and spread its momentum
distribution to the outer regions,

m» A comprehensive framework for heavy-ion collisions, called J-PHASE-Generator (Jet Particles evolved in Hydrodynamic and Afterburner Stages Event Generator), was constructed. resulting in an enhancement at larger
» Low-transverse-momenta observables were obtained from the TRENTo + VHLLE + SMASH-hadron-sampler + SMASH simulation chain. radii. The point where suppression
» Jet observables were obtained either from PYTHIA/Angantyr (initial seed) + SUBA-jet + PYTHIA (hadronisation) alongside hydrodynamic medium evolutionton to isolate the effects of the QGP transitions into enhancement occurs around
or complete framework incorporating SMASH hadronic rescattering. 0.1. A non-zero formation time reduces the

effects on the jet shape.

® We studied the impact of the hadronic phase on jet observables in PbPb 30-40% central collisions at 5.02 TeV LHC.
» We explored three scenarios for the formation proper time of jet hadrons (1.0, 0.5, and 0.0 fm/c), assuming the jet hadrons travel freely.
» A visible effect on the jet nuclear modification factor is observed for all formation proper time values. Acknowledgement '
» The hadronic phase is sufficiently long to produce a 10% enhancement of the jet shape at large distances from the jet axis.
» In the extreme scenario of zero formation proper time for jet hadrons, the modification of the jet shape in the hadronic phase becomes comparable to that in the QGP phase.
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® An analysis of hadronic effects on the jet observables in different centrality bins (~multiplicity) and the intrajet multiplicity is planned.



