Performance of the Dielectron Analysis in Pb-Pb collisions in Run 3 with ALICE Emma Charlotte Ege for the ALICE Collaboration

MOTIVATION

Dielectrons (e+e- pairs) are the ideal probe to study the properties of strongly interacting matter, produced in heavy-ion collisions They do not interact strongly & are created in all stages of the collision

- Initial stage of the collisions: Drell-Yan and hard scatterings 프 **Pre-equilibrium contributions**
- Thermal radiation from medium: Quark-Gluon plasma (QGP)

ALICE UPGRADES

- * New Inner Tracking System (ITS) ^[1]
- \rightarrow Improved pointing resolution (factor \geq 3)
- New Time Projection Chamber (TPC) ^[2]
- \rightarrow Higher data acquisition rate via continuous readout (up to 50 kHz in Pb–Pb)

* Run 3 minimum bias Pb–Pb data from 2023 * Center-of-mass energy: $\sqrt{s_{NN}} = 5.36$ TeV * Interaction rates between 6 and 46 kHz

- Event selection:
- * Centrality 10–90%
- * No other collision in time range $\pm 10 \ \mu s$

- \rightarrow Separation via invariant mass (m_{ee})
- However, large combinatorial and physical backgrounds: Hadronic decays

\rightarrow About 900.10⁶ events

Kinematic track selection:

- * Transverse momentum: $p_{T,e} > 0.4 \text{ GeV}/c$
- * Pseudorapidity: $|\eta_e| < 0.8$

ELECTRON SELECTON

TPC dE/dx

Particle identification:

* Identify electron and positron candidates with TPC dE/dx Reject other charged particles (hadrons) with TPC dE/dx Recover well separated electrons and positrons with Time of Flight (TOF)

TPC nσ_e

SIGNAL EXTRACTION

Pairing of electron and positron candidates to estimate the **combinatorial background (B)** and extract the **raw dielectron** signal (S):

- * ULS: unlike-sign pairs from same event N₊₋^{same}
- LS: like-sign pairs from same event $N_{++,--}^{\text{same}} = 2 \cdot \sqrt{N_{++}^{\text{same}}} \cdot N_{--}^{\text{same}}$
- * **R factor**: $R = N_{+-}^{\text{mix}} / 2 \cdot \sqrt{(N_{++}^{\text{mix}} \cdot N_{--}^{\text{mix}})}$
 - * Correction for different acceptance of ULS and LS pairs using mixed event
 - * $R \approx 1$ due to high and uniform performance of the ALICE central barrel, remaining structures originate from TPC sectors and the different geometry of ULS and LS pairs

RAW DIELECTRON SPECTRA

First look at the dielectron signal in Pb–Pb collisions <u>in Run 3:</u>

- Characteristic signatures (π^0 and J/ Ψ peaks) clearly visible
- Signal over background in the intermediate mass

Extend analysis to include most central events

• Topological separation of prompt and non-prompt dielectron sources based on distance-of-closest approach (DCA) as performed in Run 2 ^{[3][4]} * Search for thermal radiation in Run 2 analysis in the intermediate mass range limited by statistics and large physical background ^[4] * Improved pointing resolution of the ITS in Run 3 allows for a better separation of prompt thermal radiation and e+e- pairs from heavy-

range (1.2 < m_{ee} < 2.6 GeV/ c^2) where thermal radiation from QGP is expected: $S/B \approx 10^{-3}$ \rightarrow Compatible with S/B seen in Run 2 in central Pb–Pb collisions ^[4]

ALICE Performance

10–90% Pb–Pb, √*s*_{NN} = 5.36 TeV

 $p_{_{T}\,_{o}} > 0.4 \text{ GeV}/c, |\eta_{_{o}}| < 0.8$

S

10⁻

10⁻² =

LI-PERF-578790

- flavor hadron decays
- \rightarrow Improve S/B with topological selection
- * More data to be recorded in Run 3 & 4: \rightarrow 13 nb⁻¹ in Pb–Pb at $\sqrt{s_{NN}}$ = 5.36 TeV ^[5]
- \rightarrow Significant increase in the precision of the thermal radiation measurement

Emma Ege (emma.ege@cern.ch) Institut für Kernphysik, Goethe Universität Frankfurt

References:

- [1] "Upgrade of the Inner Tracking System Conceptual Design Report", CERN-LHCC-2012-013
- [2] "Upgrade of the ALICE Time Projection Chamber",
- CERN-LHCC-2013-020, CERN-LHCC-2015-002
- [3] "Dielectron production in proton-proton collisions at $\sqrt{s_{NN}} = 7$ TeV",
- ALICE Collaboration, JHEP 1809 (2018) 064
- [4] "Dielectron production in central Pb–Pb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV",
- ALICE Collaboration, arXiv:2308.16704
- [5] "ALICE upgrades during the LHC Long Shutdown 2",
- ALICE Collaboration, Journal of Instrumentation 19, P05062 (2024)

