

Measurement of multiplicity–dependent Ξ_c^0 production via semileptonic decay channel in pp collisions at $\sqrt{s} = 13$ TeV with ALICE

Chong Kim*, Jeongsu Bok, and Sanghoon Lim for the ALICE Collaboration

1. Introduction

Describing heavy-flavor production

Factorization approach:

$$\frac{d\sigma^{pp\to Hq}}{dp_T} = f_i(x_1, \mu_f^2) f_j(x_2, \mu_f^2) \times \frac{d\sigma^{ij\to q}}{dp_T} (x_1, x_2, \mu_f^2) \times D_{q\to Hq} (z_q = \frac{p_{Hq}}{p_q}, \mu_f^2)$$
Parton distribution
functions
functions
(PDFs)

Hard scattering
cross section
(hadronization)
(via pQCD)

- Fragmentation function (FF):
 - a. Parameterized from e⁺e⁻ and e⁻p collisions
 - b. Assumed to be <u>universal and independent of collision</u> systems
 - c. Baryon-to-meson ratio provides significant insight

Questioning the universality of the FF

- Meson-to-meson ratio: consistent with e⁺e⁻ and e⁻p
- Baryon-to-meson ratio:
 - a. Significant p_T dependence in Λ_c^+ , Ξ_c^0 , and Ξ_c^+
 - b. Significant enhancement compared to e⁺e⁻ and e⁻p
 - c. Further information accessible via multiplicity classification

4. Analysis

Procedure

- Define signal and background (BG)
 - a. Signal: $e\Xi$ pairs from $\Xi_c^0 \rightarrow e\Xi v$
 - b. Total BG = Combinatorial BG + 4-body BG
 - b-1. Combinatorial BG: from uncorrelated decay products
 - b-2. 4-body BG: correlated $e\Xi$ pairs from decay modes other than $\Xi_c^0 \to e\Xi v$
- Obtain templates for signal extraction
 - a. Signal: using MC
 - b. Combinatorial BG: data-driven approach by using like-sign pairs
 - c. 4-body BG: using MC
- Final signal extraction:

perform template fit onto unlike-sign e≡ pair distribution

2. ALICE detector in Run 2

ALICE subsystems relevant to this analysis

- TPC (Time Projection Chamber): tracking, PID[†] via dE/dx
- ITS (Inner Tracking System): tracking and vertexing
- TOF (Time of Flight): PID via time-of-flight measurement
- V0: triggering, centrality

[†]Particle identification

3. $\underline{\Xi_c}^0 \rightarrow e\Xi v \, measurement$

Ongoing ALICE $\Xi_c^0 \rightarrow e\Xi$ analysis			
Collision system		pp	
√s (TeV)		13	
Trigger	НМ	MB	
Multiplicity (%, via V0M)	0-0.1	0.1-30 / 30-100	
L _{int}	~	~32 nb ⁻¹ (MB)	
Observable		$\Xi_{\rm c}^{\rm O}/{\rm D}^{\rm O}$	

Target channel and analysis strategy

- Target: $\Xi_c^0 \rightarrow e^+ \Xi^- \nu_e \rightarrow e^+ (\pi^- \Lambda) \nu_e \rightarrow e^+ (\pi^- (p \pi^-)) \nu_e$ and its charge conjugate
- Analysis strategy:
 - a. Collect electrons and Ξ candidates
 - b. Offline selection:
 - b-1. Multiplicity classification
 - b-2. Build e≡ pairs by using collected e and ≡ candidates
 - c. Signal extraction via "template fit"
 - d. Follow-up corrections:
 - d-1. Unfolding: convert $e \equiv p_T \rightarrow \Xi_c^{\ 0} p_T$, recover momentum of missing v
 - d-2. Acc. $\times \varepsilon$, subtracting feed-down Ξ_c^0 from b-hadron...
 - e. Extract physical observables: prompt per-event yield, Ξ_c^0/D^0

5. Outlook

• $\Xi_c^0 \rightarrow e\Xi v$ analysis with ALICE

- Branching fraction ($\Xi_c^0 \rightarrow e\Xi v / \Xi_c^0 \rightarrow \Xi \pi$) is updated: 1.38 ± 0.14 (stat) ± 0.22 (syst) (PRL127, 272001) \rightarrow 0.816 ± 0.094 (stat) ± 0.121 (syst) (this analysis)
- Analysis finalized, publication is in preparation