

Measurement of transverse momentum (j_T) distributions of charged-particle jet fragments in pp collisions at $\sqrt{s} = 5.02$ TeV with ALICE

> Jaehyeok Ryu **On behalf of the ALICE Collaboration**

ALICE JSAN NATIONAL UNI NUCLEAR PHYSICS LAB

• 2017 LHC pp collisions at = \sqrt{s} = 5.02 TeV

• QCD prefers smaller emitting angles and lower virtuality with

• A previous ALICE publication of the full jet $j_{\rm T}$ distributions in pp and p-Pb collisions was inclusive in • New ALICE charged-particle jet differential in z to disentangles jet Expect dominance of high $j_{\rm T}$, z components at the early stage components at the late stage

3. MC simulation models

(LO)

PYTHIA8 webpage : https://pythia.org/

PYTHIA 8

pQCD calculation at Leading-Order

Momentum ordered parton shower

Initial hard scattering

Gluon fragmentation

(Lund string fragmentation)

Multi Parton Interaction (MPI)

• Partonic showers

Hadronisation

• Underlying event

HERWIG 7 • Initial hard scattering

HERWIG webpage

- pQCD calculation at Next-to-Leading-Order (NLO)
- Partonic showers Soft gluon interference via angular ordering
- Hadronisation
 - Cluster approach
- Underlying event Multiple partonic scatterings

Figure 4.1. j_{T} compared to PYTHIA8 Monash

Figure 4.2. j_{T} compared to HERWIG7

- Figure 4.1 and 4.2 are the j_T distributions for different $p_{T,iet}$ compared with PYTHIA8 Monash and HERWIG 7 with $10 < p_{T,jet} < 20 \text{ GeV/}c$
- $j_{\rm T}$ distributions widen with increasing z
- Herwig underestimate the high z region and overestimate the low z, high $j_{\rm T}$ region
- Descriptions of models are different in the different kinematic ranges
- Similar behavior found in POWHEG which indicates that the behavior is from the NLO partonic shower process
- Comparisons with MC generators set constraints on models

Figure 4.4 Differential z to inclusive z ratio

- Figure 4.4 is the differential z to inclusive z ratio to see the correlation between $j_{\rm T}$ and z
- High j_T components are dominant at high z, low j_T components are dominant at low z which is consistent with QCD theory
- Values of the ratio of data and MC are different, but the trends of the ratios are comparable

5. Outlook

Figure 4.3. $j_{\rm T}$ ratio to $10 < p_{\rm T,iet} < 20 \text{ GeV/}c$

- Figure 4.3 shows the $j_{\rm T}$ distributions for different $p_{\rm T,iet}$ in several z ranges, and the lower pad shows the ratio to $10 < p_{T,jet} < 20 \text{ GeV/}c$
- In the inclusive z, the result is comparable to the previous result
- There is a $p_{\rm T,jet}$ dependence of $j_{\rm T}$ distribution but the dependency weakens with increasing $p_{\rm T,jet}$
- Both models have good descriptions of the trend in the ratio for all z ranges which means the difference between the model and data is not from $p_{T,iet}$ dependence
- The early and late stages of the $j_{\rm T}$ distribution were disentangled using a twocomponent fitting method
- Gaussian distribution was used to fit the lower $j_{\rm T}$ region, while the inverse gamma function was applied to fit the higher $j_{\rm T}$ region
- Results will be fitted with a two-component method and RMS j_{T} values will be extracted and compared to various models
- These results serve as baseline measurements for future studies in high-multiplicity pp and p-Pb collisions, with the goal of investigating potential jet-medium interactions in small collision systems