

D⁰-meson tagged jet axes difference in pp collisions at $\sqrt{s} = 5.02 \,\text{TeV}$ Emma Yeats¹

on behalf of the ALICE Collaboration ¹ Department of Physics, University of California, Berkeley, CA 94720, USA Correspondence: eyeats@berkeley.edu

I. Introduction

Heavy quarks originate from hard scatterings in the early stages of hadronic collisions and develop parton-showers with unique features due to their mass.

different sensitivity to soft radiation

Angular differences between jet axis definitions, ΔR , reveal the radiation pattern inside D⁰-jets.

Standard (STD)	Winner-Takes-All (WTA)	Soft-Drop Groomed (SD)	20 	1.85 1.9 1.95 2 $m (K\pi) (Co) //o^2)$	Time of Flight (TOF) A polyogic Mothodo
D ⁰ -tagged sample of jets clustered with anti- $k_{\rm T}$ algorithm with R = 0.4. Most sensitive to soft	STD jet with Cambridge Aachen (C/A) reclustering and WTA recombination. Insensitive to soft	STD jet with C/A reclustering with the SD condition applied at each splitting: $\frac{\min(p_{T1}, p_{T2})}{\min(p_{T1}, p_{T2})} > z_{\text{cut}} \left(\frac{\Delta R_{12}}{R_{2}}\right)^{\beta}$	ALI-PREL-540847 $ \begin{array}{c} \omega \\ \times \\ 0.45 \\ \end{array} $ $ALICE, pp, \sqrt{s} = 5.02 \\ charged jets, anti-k_T, \\ 0.35 \\ \end{array} $ $ \begin{array}{c} \omega \\ 0.35 \\ 0.3 \\ 0.25 \\ 0.2 \\ \end{array} $ $ \begin{array}{c} \omega \\ \eta_{ch jet} \\ 0.2 \\ \end{array} $	R = 0.4	1. D ⁰ candidates were reconstructed from daughter tracks using topolog- ical and particle identification selec- tions (D ⁰ \rightarrow K ⁻ + π^+ and ch. conj.).
radiation! III. WTA-D ⁰ A	$p_{T1} + p_{T2}$ (n_0)		• Prompt D^0 • Non-prompt D^0 • 15 20 25 30 25	2. Jet finding performed for each D^0 candidate, using FastJet anti- $k_{\rm T}$ algorithm ($R = 0.4$).	
$\int_{1}^{\infty} \int_{1}^{10^3} \int_{1}^$			ALI-PUB-521159 ALICE, "Measureme charm jets tagged with lisions at $\sqrt{s} = 5.02$ at 0.8 ALICE Preliminary pp, $\sqrt{s} = 5.02$ TeV p_0 if the test	p _{T,D⁰} (GeV/c) ent of the production of ith D0 mesons in pp col- and 13 TeV", JHEP 2023	3. D ⁰ -jet yield evaluated via fit to invariant-mass distribution to remove combinatorial $K^{\mp}\pi^{\pm}$ pairs surviving the D ⁰ selections.
• STD-D ⁰ 10 ⁻¹ 10 ⁻² 10 ⁻³ $D^0 \rightarrow K^-\pi^+ \text{ and } c$	PYTHIA PYTHIA Measuremen clear evidence D ⁰ axes are also	At of ΔR_{WTA-D^0} shows e that the WTA and igned. b in $10 \leq p_{T,jet} \leq 20 \text{ GeV}/c$ how that, in the measured c ranges, the D ⁰ is almost e leading particle	$\begin{array}{c} \mathbf{W} \\ $	charge conj. anti- $k_{\rm T}$, $R = 0.4$ SeV/c, $ \eta_{\rm jet} \le 0.5$ l/c , $ y_{\rm D^0} \le 0.8$ uncertainty fraction 4 0.06 0.08 0.1 0.12 $\Delta R_{\rm STD-D^0}$	4. Yields corrected for D ⁰ -tagged jet reconstruction efficiency and the non- prompt $(b \rightarrow c \rightarrow D^0)$ contribution.
$10^{-4} = 10^{-4} = 10^{-4} = 10^{-4} = 10^{-4} = 10^{-4} = 10^{-5} = 10^{-5} = 20^{$	• $99\% \pm 1\%$ GeV/c, $ \eta_{jet} \le 0.5$ $1/c, y_{D^0} \le 0.8$ • Results since the second s				5. Jet axes differences corrected for detector effects with an iterative Bayesian unfolding approach.

II. Analysis Steps: D^0 -tagged jets in ALICE

IV. Effects of Grooming on the Jet Direction

V. Comparison to Generators

String-Based Generators: PYTHIA 8 and SHERPA Lund Based on lattice simulations of gluonic interactions from QCD

Grooming removes radiation softer than z_{cut} with $\beta = 0$.

• ΔR_{SD-D} has some radiation (proportional to $z_{\rm cut}$) removed compared to $\Delta R_{\rm STD-D^0}$

• ΔR_{STD-SD} is non-zero due to the groomed-away radiation

000000 Intensifying grooming from $z_{cut} = 0.1$ to $z_{cut} = 0.2$: $\Delta R_{
m STD-SD}$ $\Delta R_{
m SD-D^0}$...shows that SD jets are more ...shows that radiation is relikely to survive grooming if the moved uniformly with respect SD axis is further from the D^0 to the STD axis

Cluster-Based Generators: HERWIG 7 and SHERPA Ahadic Based on evolution of proto-hadron clusters

$\Delta R_{ m STD-SD}$ $\Delta R_{ m SD-D^0}$ • String-based models describe • String-based models match data, overall better predictions the data better for $z_{\rm cut} = 0.1$ • HERWIG predicts less de-• HERWIG predicts the least pendence on $z_{\rm cut}$ for large ΔR dependence on $z_{\rm cut}$ ALICE Preliminary, pp, $\sqrt{s} = 5.02 \text{ TeV}$ PYTHIA Data $D^0 \rightarrow K^-\pi^+$ and charge conj. 2 in ch. jets, anti- k_{T} , R = 0.4, SD $\beta = 0$ $10 < p_{\tau}^{ch \, jet} < 20 \; { m GeV}/c, \, |\eta_{iet}| \le 0.5$ HERWIG Data $--- Z_{cut} = 0.1$ $- - Z_{cut} = 0.2$ $5 < p_{T}^{D^0} < 20 \text{ GeV}/c, |y_{D^0}| \le 0.8$ SHERPA Data - Ahadic, $z_{cut} = 0.1$ $- - z_{cut} = 0.2$

VI. Summary

1. The D^0 is aligned with the WTA axis (leading particle) 2. If SD axis and D⁰ are further apart \rightarrow jet more likely to survive grooming • Inclusive jets: grooming did not substantially change jet direction [1] • D⁰-jets: addition of D⁰ axis \rightarrow stronger sensitivity to the SD condition. HERWIG and SHERPA Lund provide the best description of the data [1] ALICE, "Measurements of jet-axis differences in pp collisions at $\sqrt{s} = 5.02$ TeV", JHEP 2022, no.242, p.37