Jet spectra evolution as a function of center of mass energy in pp collisions with ALICE

Graduiertenkolleg 2149 Research Training Group

Archita Rani Dash on behalf of the ALICE Collaboration

Institute of Nuclear Physics, University of Münster, Germany archita.rani.dash@cern.ch

Jet Production in Hadronic Collisions

- jets are collimated sprays of particles originating from hard scattered partons [1,2] theoretically calculable in pQCD
- inclusive jet production in pp collisions \rightarrow reference for more complex systems [1,2] □ p-Pb collisions (study of cold nuclear matter) □ Pb–Pb collisions (study of QGP medium)
- \rightarrow provide constraints on [2,3]

©Eric M. Metodiev

\Box strong coupling constant α_s

(Full)Jet Reconstruction in ALICE

- charged-particle jet reconstruction [3,4]
- "charged-particle tracks" : ITS + TPC
- full φ acceptance'
- jets required to be fully contained within the TPC
- $-|\eta| < 0.9$
- $-p_{T,track} > 150 \text{ MeV/}c$
- full jet reconstruction [4]
- "charged-particle tracks" : ITS + TPC
- "neutral constituents" : EMCal clusters
- Run: $\Delta \varphi$ 1 & 2/3: 100° /107°
- $-|\eta| < 0.7$
- $-E_{cluster} > 300 \text{ MeV}$
- jets required to be fully contained within the EMCal
- $-80^{\circ} + R_{\text{jet}} < \varphi_{\text{jet}} < 187^{\circ} R_{\text{jet}}$
- $-|\eta_{\text{jet}}| < 0.7 R_{\text{jet}}$
- jets reconstructed with the FastJet package using the anti-k_T algorithm with the E-scheme [5]

First Full Jet Performance Studies in Run 3 in pp Collisions at $\sqrt{s} = 13.6$ TeV

Probability distribution of Neutral Energy Fraction

 $\Box \text{ Neutral Energy Fraction (NEF)} = \frac{\text{Neutral Energy in a Jet}}{\text{Total Jet Energy}}$

- □ characterizes the fraction of jet energy deposited in

- \Box shows strong jet $p_{\rm T}$ dependence in the lower jet $p_{\rm T}$
- \Box NEF increases from approximately 0.3 to \sim 0.4 with

Comparisons with MC Generators in pp Collisions

Summary and Outlook

• Inclusive full jet cross-section (*R* dependent ratio) measurements in pp collisions □ reference for more complex systems, such as p–Pb and Pb-Pb collisions □ help to understand jet formation

□ provide constraints for different theoretical models

□ LO (PYTHIA): good agreement with cross section ratios

□ NLO (POWHEG): provides better description of full jet cross sections within uncertainties

Performance of full jets in Run 3 in pp collisions

□ Neutral Energy Fraction distributions (without hadronic correction) in good shape with Run 3 pp data **Outlook:**

• important validation of jet physics with a completely new detector design in Run 3

• increased statistics due to new continuous readout system + EMCAL hardware triggers (2023 data)

• full jet measurements comparison with NLO predictions in Run 3 pp collisions at 13.6 TeV • reference measurement for probes fully exploiting the gain in statistics, e.g. gamma-jet correlations

• inclusive full jet cross section at $\sqrt{s} = 8$ TeV (left) and 13 TeV (right)

□ helps to probe the radial profile of energy within a jet cone

□ important observable to study jet fragmentation and hadronisation

□ provides data inputs for the global PDF fits

 \Box **PYTHIA** alone over-predicts data by \approx 50% but describes cross-section ratios well [6]

□ predictions including **POWHEG** agrees with data within uncertainties [7]

□ **NLO correction** provides a better description

References

- . Rosi Reed, J. Phys.: Conf. Ser. 446, 012006 (2013)
- 2. ALICE Collaboration, Phys. Rev. C 101, 034911 (2020)
- 3. ALICE Collaboration, JINST 5, P03003 (2010)
- 4. ALICE Collaboration, JINST 18, P08007 (2023)
- 5. M. Cacciari et al., Eur. Phys. J. C 72, 1896 (2012)
- 6. T. Sjöstrand, CPC 246, 106910 (2020) 7. S. Frixione et al., JHEP 11, 070 (2007)

Acknowledgements

The author acknowledges financial support from BMBF in the ErUM Framework and DFG GRK2149.

Hard Probes 2024, HP2024, Nagasaki, Japan, September 22-27, 2024

living.knowledge