

Observation of top-quark pair production in heavy-ion collisions in the ATLAS experiment

Patrycja Potępa for the ATLAS Collaboration

Top-quark pair production

700

400

300

200

ო 0.7

- Top quarks in heavy-ion collisions provide novel probes of **nuclear modifications** to parton distribution functions (nPDF).
- Top quarks are sensitive to **gluon nPDFs** in the high Bjorken-*x* region.
- Top quarks are more likely produced in **pairs** ($t\bar{t}$) and decay before hadronisation.

┣━━

b-j

• 165 nb⁻¹ of *p*+Pb data at $\sqrt{s_{NN}} = 8.16$ TeV were collected in 2016 by ATLAS.

JGU

UNIVERSITÄT MAINZ

JOHANNES GUTENBERG

AGH

2 tt measurement in p+Pb collisions e+jets μ +jets dilepton 400**⊢ ATLAS** ATLAS ATLAS 🔶 Data 🔶 Data p+Pb $\sqrt{s_{NN}} = 8.16 \text{ TeV}, 165 \text{ nb}^{-1}$ $p + Pb \sqrt{s_{NN}} = 8.16 \text{ TeV}, 165 \text{ nb}^{-1}$ $p+Pb \sqrt{s_{NN}} = 8.16 \text{ TeV}, 165 \text{ nb}^{-1}$ tī 1ℓ1*b e*+jets $1l1b\mu$ +jets 2l1b Single top 350 Single top Single top Post-Fit Post-Fit Post-Fit W+b Z+b W+c Z+c W+liah W+ligh Z+light Z+b Diboson Z+c Z+c Fake lepton 200 Z+light Z+light Uncertainty Diboson Diboson 150 Fake lepton Fake lepton Uncertainty Uncertainty 100 1.25 1.25 0.5**⊢** 100 - 0.5∟ 100 700 800 900 1000 500 600 700 800 900 1000 200 300 400 500 600 700 800 900 1000 500 600 $H^{\ell,j}_{\mathsf{T}}$ [GeV] $H^{\ell,j}_{\mathsf{T}}$ [GeV] $H^{\ell,j}_{\mathrm{T}}$ [GeV]

4 $t\bar{t}$ cross-section

- Measured $t\bar{t}$ production cross section:
 - $\sigma_{t\bar{t}} = 58.1 \pm 2.0 \text{ (stat.)} ^{+4.8}_{-4.4} \text{ (syst.) nb.}$
- The most precise $t\bar{t}$ cross-section measurement in heavyion collisions.
- A good agreement with the CMS measurement and the cross section in *pp* collisions scaled by $A_{\rm Pb} = 208$.

- Electrons must have $p_T > 18$ GeV and $|\eta| < 2.47$ and pass Medium identification.
- **Muons** must have $p_T > 18$ GeV and $|\eta| < 2.5$ and pass Medium requirements.
- Jets are required to have $p_{\rm T} > 20$ GeV and $|\eta| < 2.5$.
- A **profile-likelihood fit** is performed using $H_T^{\ell,j}$ distributions in six signal regions.
- $H_{T}^{\ell,j}$ is defined as the scalar sum of lepton and jet transverse momenta.
- A good agreement between data and predictions.

3 tt signal strength

 $\mu_{t\bar{t}} = \sigma_{t\bar{t}}^{\text{measured}} / \sigma_{t\bar{t}}^{\text{theory}}.$

					1	F	٦
_	. .	-	_	V			,

5 $t\overline{t}$ nuclear modification factor

- A **nuclear modification factor** in *p*+Pb collisions is defined as $R_{pA} = \sigma_{t\bar{t}}^{p+Pb} / (A_{Pb} \cdot \sigma_{t\bar{t}}^{pp}).$
- Measured nuclear modification factor: $R_{pA} = 1.090 \pm 0.039 \text{ (stat.)} ^{+0.094}_{-0.087} \text{ (syst.)}.$
- A good agreement is found with NNLO calculations based on four nPDF sets.

This work was supported in part by the National Science Centre, Poland, grant 2020/37/B/ST2/01043 and by PL-Grid Infrastructure.

12th International Conference on Hard and Electromagnetic Probes of High-Energy Nuclear Collisions

References

[1] ATLAS Collaboration, arXiv:2405.05078