Outlook for b-jet measurements using heavy-flavour tagging with secondary-vertex method in pp collisions at 13.6 TeV with ALICE Hanseo Park for the ALICE collaboration hapark@cern.ch ALICE University of Tsukuba, Japan **Physics Motivation** Jet tagging **Advantages of heavy-flavour tagged jets** • Heavy-flavour jets are tagged by the largest SL_{xv} decay • Provide insights into properties of scattered heavy-flavour products of the secondary vertices that exceed a set tagger partons and their fragmentation and constrain pQCD-based working point threshold ($SL_{xv} > 30$) models. tagged • Heavy-flavour jets allow us to study the flavour dependences v<mark>flavour</mark> Ntotal Nflavour Tagging efficiency = 🕂 charm jet fficie PYTHIA 8 + Geant 4 + beauty jet of jet quenching, including the impact of mass effects and pp, *√s* = 13.6 TeV anti- k_{T} , R = 0.4, Charged-particle jets + light-flavour jet Casimir colour factors 3-prongs candidate (largest $SL_{xy} > 30$) High efficiency of bjet tagging when

Analysis

- MC simulations of PYTHIA 8 with GEANT 4 reconstruction of the ALICE detector
- Jet reconstruction \circ anti- $k_{\rm T}$ algorithm $\circ p_{\rm T}^{\rm ch \, jet} > 10 \, {
 m GeV}/c$ $\circ R = 0.4$ $\circ |\eta^{\mathrm{ch \, jet}}| < 0.5$
- Track reconstruction $\circ p_{\rm T}^{\rm track} > 0.15 \, {\rm GeV}/c$ $\circ |\eta^{\text{track}}| < 0.9$
- **b-jet tagging algorithms in ALICE**
 - Method utilising large impact parameter of heavyflavour hadron decay products
 - Method utilising large decay length of heavy-flavour hadron
 - Machine learning models trained on a variety of topological properties of the displaced decay products and reconstructed decay vertices

Secondary-vertex method

 Secondary-vertex selection ○ 3-prong decays

beauty

jet

Q

charm

jet

light-flavour

Invariant mass distribution

- The b-jet tagging algorithm enriches the jet sample with b jets.
- The invariant mass distributions of the reconstructed secondary vertices in jets are a discriminant of heavy-flavour and light-flavour jets
- The comparison of invariant mass distributions between untagged and tagged jets shows a clear shift

Sample of inclusive jets with no heavy-flavour jet tagging

Sample of heavy-flavour tagged jets

- - Beauty hadrons often decay into three tracks, forming a secondary vertex.
- Point of Closest Approach (PCA)
 - Tracks are selected based on their closest approach to the primary vertex, identifying displaced decay products.
- \circ Maximum transverse decay length (D_{max} < 4 cm)
- The long lifetime of heavy-flavour quarks allows for the identification of a secondary vertex, displaced from the primary vertex
- Decay length significance: $SL_{xy} = L_{xy}/\sigma_{L_{xy}}$ (L_{xy} : decay length in the x-y plane)

Conclusion & Summary

- Evaluation of the performance of the Run 3 ALICE detector for heavy-flavour jet tagging using MC.
- S_{xy} is used as it effectively discriminate heavy-flavour jets using secondary vertices.
- The efficiency of the heavy-flavour jet tagging depend on the chosen tagger working point.
- Tagged jet of Invariant mass of secondary vertex distribution shows discrimination of heavy-flavour jets with suppression of light-flavour.

- Selects the secondary vertex within the jet with the **highest** SL_{xy} .
- Different jet flavours can be discriminated at large SL_{xv}

Outlook

- Vary working point to optimize beauty-jet efficiency and purity, followed by a measurement of the beauty-jet cross section.
- Additional tagging methods (impact parameter, machine learning) to be explored.
- Perform measurement of beauty-tagged jets in heavy-ion collisions for further insights into the properties of the QGP.

